Department

Chemistry & Geosciences

Document Type

Article

Publication Date

2023

Abstract

Palladin is an actin binding protein that is specifically upregulated in metastatic cancer cells but also colocalizes with actin stress fibers in normal cells and is critical for embryonic development as well as wound healing. Of nine isoforms present in humans, only the 90 kDa isoform of palladin, comprising three immunoglobulin (Ig) domains and one proline-rich region, is ubiquitously expressed. Previous work has established that the Ig3 domain of palladin is the minimal binding site for F-actin. In this work, we compare functions of the 90 kDa isoform of palladin to the isolated actin binding domain. To understand the mechanism of action for how palladin can influence actin assembly, we monitored F-actin binding and bundling as well as actin polymerization, depolymerization, and copolymerization. Together, these results demonstrate that there are key differences between the Ig3 domain and full-length palladin in actin binding stoichiometry, polymerization, and interactions with G-actin. Understanding the role of palladin in regulating the actin cytoskeleton may help us develop means to prevent cancer cells from reaching the metastatic stage of cancer progression.

Publication/Presentation Information

Protein Science: A Publication of the Protein Society, 32(5), 2023, e4638.

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.