Date of Award

Fall 2022

Document Type

Thesis

Degree Name

Master of Science (MS) in Mathematics

Department

Mathematical, Computing & Information Sciences

Committee Chair

Dr. Jason Cleveland

Abstract

In this paper we explore Bayesian inference and its application to the problem of estimating the intensity function of a non-homogeneous Poisson process. These processes model the behavior of phenomena in which one or more events, known as arrivals, occur independently of one another over a certain period of time. We are concerned with the number of events occurring during particular time intervals across several realizations of the process. We show that given sufficient data, we are able to construct a piecewise-constant function which accurately estimates the mean rates on particular intervals. Further, we show that as we reduce these intervals in size, at the limit we are able to reconstruct the original intensity function.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.