
Jacksonville State University Jacksonville State University 

JSU Digital Commons JSU Digital Commons 

Research, Publications & Creative Work Faculty Scholarship & Creative Work 

2022 

Performance Evaluation of Different Raspberry Pi Models for a Performance Evaluation of Different Raspberry Pi Models for a 

Broad Spectrum of Interests Broad Spectrum of Interests 

Eric Gamess 
Jacksonville State University, egamess@jsu.edu 

Sergio Hernandez 

Follow this and additional works at: https://digitalcommons.jsu.edu/fac_res 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Gamess, E., & Hernandez, S. (2022). Performance evaluation of different raspberry Pi models for a broad 
spectrum of interests. International Journal of Advanced Computer Science and Applications, 13(2), 
819-829. https://doi.org/10.14569/ijacsa.2022.0130295 

This Article is brought to you for free and open access by the Faculty Scholarship & Creative Work at JSU Digital 
Commons. It has been accepted for inclusion in Research, Publications & Creative Work by an authorized 
administrator of JSU Digital Commons. For more information, please contact digitalcommons@jsu.edu. 

https://digitalcommons.jsu.edu/
https://digitalcommons.jsu.edu/fac_res
https://digitalcommons.jsu.edu/fac_scholarship
https://digitalcommons.jsu.edu/fac_res?utm_source=digitalcommons.jsu.edu%2Ffac_res%2F209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.jsu.edu%2Ffac_res%2F209&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@jsu.edu


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 2, 2022 

819 | P a g e  

www.ijacsa.thesai.org 

Performance Evaluation of Different Raspberry Pi 

Models for a Broad Spectrum of Interests 

Eric Gamess 

MCIS Department 

Jacksonville State University 

Jacksonville, Alabama, USA 

Sergio Hernandez 

Information Security 

Citibank, New York 

USA 

 

 
Abstract—Now-a-days, Single Board Computers (SBCs), 

especially Raspberry Pi (RPi) devices, are extensively used due to 

their low cost, efficient use of energy, and successful 

implementation in a wide range of applications; therefore, 

evaluating their performance is critical to better understand the 

applicability of RPis to solve problems in different areas of 

knowledge. This paper describes a comparative and experimental 

study regarding the performance of five different models of the 

RPi family (RPi Zero W, RPi Zero 2 W, RPi 3B, RPi 3B+, and 

RPi 4B) in several scenarios and with different configurations. To 

conduct our multiple experiments on RPis, we used a self-

developed and other existing open-source benchmarking tools 

allowing us to perform tests that mimic real-world needs, 

assessing important factors including CPU frequency and 

temperature during stressful activities, processor performance 

when executing CPU-intensive processes such as audio and file 

compressions as well as cryptographic operations, memory and 

microSD storage performance when executing read and write 

operations, TCP throughput in different WiFi bands, and TCP 

latency to send a specific payload from a source to a destination. 

Our experimental results showed that the RPi 4B significantly 

outperformed the other SBCs tested. In addition, our research 

indicated that the RPi Zero 2 W overclocked, RPi 3B, and RPi 

3B+ had similar performance. Finally, the RPi Zero 2 W showed a 

much higher capacity than its predecessor, the RPi Zero W, and 

seems to be a perfect replacement when upgrading, since they 

have the same form factor and are physically interchangeable. 

With this study, we aim to guide researchers and hobbyists in 

selecting adequate RPis for their projects. 

Keywords—Performance evaluation; benchmarks; raspberry 

pi; single board computer 

I. INTRODUCTION 

One of the most popular Single Board Computer (SBC) is 
the Raspberry Pi (RPi), with a vast online community of users 
around the world. Build on open-source principles and 
motivated by the non-profit incentive to increase global access 
to computing and solve a variety of real-world challenges using 
digital technology, these low-cost SBCs bring together external 
hardware, sensors and controller interfaces, with user-friendly 
programming capabilities, high connectivity, and desktop 
functionality [1]. 

RPis are being employed in a broad range of projects across 
diverse topics and research fields, including the Internet of 
Things (IoT) that has become widely used in recent years in an 
extensive range of applications from smart cities and industries 
to water monitoring [2][3]. Examples of successful uses of 

RPis can be found in the field of Artificial Intelligence (AI) 
and Machine Learning (ML), where researchers have been 
highlighting not only a good performance but also a low 
energy consumption [4][5]. Additionally, the usage of RPis has 
spread to other relevant areas such as cybersecurity, energy, 
health, education, to name a few [6]. 

Considering the frequent usage of RPis in applications, it is 
essential to deeply analyze how they behave and perform under 
different conditions for a given period of time, to better 
understand their capabilities and limitations. In this paper, we 
carried out a comparative and experimental study of five 
different models of the RPi family (RPi Zero W, RPi Zero 2 
W, RPi 3B, RPi 3B+, and RPi 4B). To do so, we conducted 
several experiments by using a benchmarking tool that we 
developed as well as existing open-source benchmarking tools 
to evaluate the performance of RPis in terms of processor 
frequency and temperature, CPU use level, RAM and microSD 
access performance, TCP throughput and latency, among 
others. We think the results of this study might guide scientists 
and hobbyists in selecting adequate models of RPi for their 
projects, according to their budget and performance 
requirements. 

The rest of the paper is structured as follows. Section II 
discusses the related work. The description of the testbed 
environment is done in Section III. Section IV reports and 
discusses the results of our performance evaluation of the 
different RPi models. Finally, Section V concludes the paper 
and gives directions for future work. 

II. RELATED WORK 

Due to the popularity and constant evolution of the 
Raspberry Pi models, several works about the performance 
evaluation of these devices have been performed. We reviewed 
the literature in order to examine and understand areas, 
methods, and available tools to assess their performance. 

Morabito [7] performed an assessment of container-based 
technologies running on top of a Raspberry Pi 2 Model B using 
different types of workloads to challenge a specific subsystem 
of the hardware under test. This study aimed to evaluate the 
use of Docker containers in constrained environments, 
providing a detailed performance analysis. Experiments in a 
testbed were conducted, and metrics such as CPU execution 
time, power consumption, memory speed, network bandwidth, 
and protocol overhead for MySQL and Apache were reported. 
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Other works [8][9] examined the performance of Intrusion 
Detection Systems (IDS) running on RPis. Kyaw, Chen, and 
Joseph [8] presented the results of an experiment comparing 
two open-source IDSs (Snort and Bro) on a Raspberry Pi 2 
Model B, with the main goal of determining their performance, 
efficiency, and efficacy for use in computer network 
environments, where cost is a determining factor. On the other 
hand, Aspernäs and Simonsson [9] compared two RPis 
(Raspberry Pi 1 Model B+ and Raspberry Pi 2 Model B) while 
examining the traffic for intrusion detection in a home 
environment. 

The authors of [10] carried out a performance analysis of 
SNMP [11] agents running in three different RPis (Raspberry 
Pi Zero W, Raspberry Pi 3 Model B, and Raspberry Pi 3 Model 
B+). Numerous experiments varying different parameters, 
requests, versions, and security models of SNMP were 
performed. 

Another related work was consulted in [12], where a 
performance evaluation of RESTful frameworks on two 
Raspberry Pi 1 Model B was carried out. In this study, 
experiments involving combinations of factors such as device 
CPU frequency and message size with different configurations 
or levels were conducted by comparing two web services 
frameworks (Axis2 and CXF) to understand better not only the 
energy consumption, but also the relationship between 
performance and energy consumption in RPis. 

Guamán, Ninahualpa, Salazar, and Guarda [13] did a 
comparative study between the MQTT [14][15] and the CoAP 
[16][17] protocols for IoT in an IEEE 802.11 environments, 
using a Raspberry Pi 3 Model B+. For the analysis of network 
parameters, traffic injection tests were carried out with specific 
tools, using different bandwidths and data sizes. Another work 
in this direction was done in [3], where the authors presented 
performance measurements of the Raspberry Pi Zero W 
working as an IoT gateway between local sensors and a public 
MQTT [14][15] broker running in the cloud. The experimental 
results demonstrated its performance using the following 
metrics: CPU utilization, temperature, as well as the rate of 
received MQTT messages under different levels of Quality of 
Service (QoS). 

Other studies in the area are focused on benchmarking 
cryptographic algorithms on RPis. For instance, Hawthorne, 
Kapralos, Blaine, and Matthews [18] compared the 
performance of three computing systems for three leading 
cryptographic algorithms (AES, Twofish, and Serpent). The 
three computing systems considered were: (1) a cluster of 
Raspberry Pi 3 Model B+, (2) a power-efficient next unit of 
computing (NUC), and (3) a mid-range desktop (MRD). The 
metrics reported by this work included encryption/decryption 
throughput and power consumption. Similarly, the study in 
[19] aims to analyze the performance of symmetric encryption 
algorithms (DES and AES) within the PHP programming 
language using RPis. The authors reported parameters such as 
the time and memory consumption to encrypt/decrypt 
messages. 

Although multiple studies on performance evaluation have 
been performed, they mainly analyze how specific 

technologies (e.g., containers) behave when run on certain RPi 
models. Thus, parameters that were evaluated are intrinsically 
related to a particular environment and do not allow a broad 
understanding of how the main RPi subsystems respond to 
different conditions, based on CPU workload, I/O requirement, 
network traffic, amongst others. Since the potential of the RPi 
has not been broadly analyzed, there is a gap for those who 
want to have a more general view of the performance of an 
RPi, for scenarios that were not covered by the actual 
specialized literature. 

Unlike previous works, our paper considers five different 
models of RPis, and our assessment covers a broad spectrum of 
interests. Moreover, the Raspberry Pi Zero 2 W was released at 
the end of October 2021, and no other scientific work to 
evaluate its performance was found at the time of performing 
this study. Therefore, with this paper, we aim to guide 
scientists and hobbyists in their selection of an adequate model 
of Raspberry Pi according to their budget and performance 
requirements. 

III.  DESCRIPTION OF THE TESTBED ENVIRONMENT 

A. Models of Raspberry Pi used in the Experiments 

For our assessment, we had the following Raspberry Pi 
SBCs: two Raspberry Pi Zero W, two Raspberry Pi Zero 2 W, 
two Raspberry Pi 3 Model B, one Raspberry Pi 3 Model B+, 
and one Raspberry Pi 4 Model B (8 GB of RAM). Some of 
their technical specifications are presented next: 

 Raspberry Pi Zero W (RPi Zero W): It is based on a 32-
bit Broadcom BCM2835 single-core ARM1176JZF-S 
SoC @ 1.0 GHz, 512 MB of RAM, one 2.4 GHz IEEE 
802.11b/g/n WiFi interface, one micro USB On-The-Go 
port, one mini HDMI connector, and one microSD card 
slot [20]. 

 Raspberry Pi Zero 2 W (RPi Zero 2 W): It is based on 
an RP3A0-AU, which consists of the integration of a 
64-bit Broadcom BCM2710A1 quad-core Cortex-A53 
@ 1.0 GHz and 512 MB of RAM, in a single chip. It 
also has one 2.4 GHz IEEE 802.11b/g/n WiFi interface, 
one micro USB On-The-Go port, one mini HDMI 
connector, and one microSD card slot [21]. It can be 
easily overclocked to 1.3 GHz with an adequate heat 
sink. 

 Raspberry Pi 3 Model B (RPi 3B): It is based on a 64-
bit Broadcom BCM2837 quad-core Cortex-A53 SoC @ 
1.2 GHz, 1 GB of RAM, one 10/100 Mbps Ethernet 
interface, one 2.4 GHz IEEE 802.11b/g/n WiFi 
interface, four USB 2.0 ports, one full-size HDMI 
connector, and one microSD card slot [22]. 

 Raspberry Pi 3 Model B+ (RPi 3B+): It is based on a 
64-bit Broadcom BCM2837B0 quad-core Cortex-A53 
SoC @ 1.4 GHz, 1 GB of RAM, one Gigabit Ethernet 
interface over USB 2.0 (maximum throughput 300 
Mbps), one dual-band 2.4 GHz and 5 GHz IEEE 
802.11b/g/n/ac WiFi interface, four USB 2.0 ports, one 
full-size HDMI connector, and one microSD card slot 
[23]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 2, 2022 

821 | P a g e  

www.ijacsa.thesai.org 

 Raspberry Pi 4 Model B (RPi 4B): It is based on a 64-
bit Broadcom BCM2711 quad-core Cortex-A72 SoC @ 
1.8 GHz, 1/2/4/8 GB of RAM, one Gigabit Ethernet 
interface, one dual-band 2.4 GHz and 5 GHz IEEE 
802.11b/g/n/ac WiFi interface, two USB 2.0 ports, two 
USB 3.0 ports, two micro-HDMI connectors, and one 
microSD card slot [24]. 

In all the SBCs, we inserted a 64 GB SanDisk Extreme 
microSDXC UHS-I Memory Card (SDSQXA2-064G-
GN6MA) with the operating system preinstalled. It is 
considered as one of the fastest microSD cards of the market, 
with up to 160 MB/s and 60 MB/s for the reading and writing 
speeds, respectively. Also, unless otherwise stated, all the 
experiments were carried out with no cooling solution for the 
RPi Zero W, RPi Zero 2 W, RPi 3B, and RPi 3B+. However, 
for most of the experiments, we chose to control the 
temperature of the RPi 4B with a small fan since its 
temperature can dramatically increase, in contrast to the other 
RPis that we selected for our study. 

B. Operating Systems for Raspberry Pi 

Several operating systems are available for Raspberry Pi. 
We opted for the most popular one developed by the Raspberry 
Pi Foundation, and known as Raspberry Pi OS (32-bit version). 
It is based on Debian Bullseye. The last version was released in 
October 2021. Three options of this operating system are 
available: (1) Raspberry Pi OS Lite, (2) Raspberry Pi OS with 
Desktop, and (3) Raspberry Pi OS with Desktop and 
Recommended Software. The “Lite” option is a minimal image 
consisting of 493 packages without an X-window manager. 
Hence, it runs fast and is more suitable for a server 
environment. The “Desktop” option is a superset of the “Lite” 
option, with a total of 1324 packages. It is more oriented to 
end-users since it includes Openbox as the window manager 
and LXDE as the desktop environment. The “Desktop and 
Recommended Software” option consists of 1944 packages 
and has all the “Desktop” option features, but also includes an 
office productivity suite (LibreOffice) and additional supports 
for developers (Erlang, Node.js, Ruby, Java, Wolfram, Apache 
Ant, BlueJ, Firebird, and Greenfoot). We chose the “Lite” 
option for all our experiments since our performance 
evaluation is more targeted towards a server installation in 
headless mode. 

There is a beta version of Raspberry Pi OS for 64-bit 
architecture. Hence, it does not work with the RPi Zero W 
since it is equipped with a 32-bit processor. The Raspberry Pi 
Foundation released its last version in October 2021, and we 
could not make it works with the RPi Zero 2 W. 

C. Testbed Used for the Network Experiments 

We assessed the performance of the networking system of 
the different RPis. To do so, we utilized the testbed of Fig. 1. It 
consisted of two network devices connected through a wireless 
router. In some experiments, the network devices were two 
identical RPis. In other experiments, one network device was 
an RPi, while the other one was a PC. The two network devices 
were placed 4 meters from the wireless router, with no 
obstacles between them. For the wireless router, we used a 
NETGEAR AC1200 Smart WiFi Router R6220. It had the 
following characteristics: an 880 MHz MediaTek processor 

width two radio bands (IEEE 802.11b/g/n in the 2.4 GHz band 
and IEEE 802.11a/n/ac in the 5 GHz band), 128 MB of flash, 
128 MB of RAM, and five 10/100/1000 Mbps Ethernet ports 
(one WAN and four LANs). 

The PC had the following specifications: Dell OptiPlex 
3030 AIO, with a 64-bit Intel quad-core i3-4130 CPU at 3.4 
GHz, 16 GB of RAM, a 512 GB SSD, a 1 Gbps Ethernet NIC, 
and an Intel Wireless 7260 Network Adapter (dual-band WiFi 
adapter with support to IEEE 802.11a/b/g/n/ac). Debian amd64 
11.1 (codename “Bullseye”) was installed as the operating 
system. 

 

Fig. 1. Testbed for the Network Experiments. 

IV.  PERFORMANCE RESULTS AND ANALYSIS 

In this section, we made a performance evaluation of the 
considered RPis (RPi Zero W, RPi Zero 2 W, RPi 3B, RPi 
3B+, and RPi 4B) in several scenarios, reporting different 
parameters. Each experiment was executed several times, and 
the reported results are an average of the repeated experimental 
runs. By repeating and averaging, we ensure the consistency of 
our empirical findings. 

A. Evaluation of the Temperature with Stressberry Test 

The processor of an RPi can overheat if it does not have 
enough cooling. This overheating problem is more frequent in 
powerful CPUs, such as the one of the RPi 4B. When 
necessary, CPU throttling (also known as dynamic frequency 
scaling) will occur to decrease the electrical energy being 
consumed, and in turn, to reduce the heat generation. Small 
heat sinks, specific cases, fans, and other solutions can be 
utilized to cool down the CPU of an RPi. 

The Stressberry test [25] can be used to reveal if the CPU 
of an RPi can run at maximum load in its case/environment 
without overheating, and being forced to slow down. It has 
four phases. In the first phase, Stressberry waits until having a 
stable temperature. To do so, it lets the CPU idle and just takes 
a temperature sample every 60 seconds. This initial phase ends 
when two consecutive samples (previous and current 
temperatures) are the same. It is noted that no temperature and 
frequency samples are stored in the resulting file during the 
first phase. In the second phase, the test lets the CPU idle for 
150 seconds, storing samples of the base temperature and base 
frequency in the resulting file every two seconds. Then, in the 
third phase, all the cores of the CPU are stressed with a 
maximum load for 300 seconds. The variation of the 
temperature and frequency are also saved in the resulting file 
during this phase. In the final phase (fourth phase), the test lets 
the CPU idle for another 150 seconds, to have an insight on 
how fast it can cool down. Here also, the variation of the 
temperature and frequency are recorded in the resulting file. 
The entire process takes 600 seconds (10 minutes). When the 

NETGEAR R6220

PC

Raspberry Pi

Raspberry Pi
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test ends, the resulting data (temperature and frequency) that 
were stored in the resulting file can be processed and plotted. 

Fig. 2 shows the instructions that we used to install and run 
Stressberry. Python 3.x is required, and its version was verified 
with Line 01. Lines 02 and 03 allow the installation of the 
dependencies and Stressberry, respectively. The version of 
Stressberry was obtained in Line 04 (in our case, version 
0.3.3), while Line 05 displays some help about the software 
usage. Stressberry was run with the instruction of Line 06, 
where option -i specifies the idle time in seconds before 
(phase 2) and after (phase 4) the stress portion (phase 3), while 
option -d indicates the stress test duration in seconds (phase 
3). Line 07 generates a graphical representation of the 
experiment for the temperature, while Line 08 does it for both 
the temperature and frequency. 

01: python --version 

02: apt-get install stress python3-pip libatlas-base-dev \ 

 libopenjp2-7-dev 

03: pip3 install stressberry 

04: stressberry-run -v 

05: stressberry-run -h 

06: stressberry-run -i 150 -d 300 resFile.dat 

07: stressberry-plot resFile.dat -o temp.png --not-transparent 

08: stressberry-plot resFile.dat -o both.png --not-transparent -f 

Fig. 2. Installation and Execution of Stressberry. 

Fig. 3 depicts the results that we obtained by running the 
Stressberry test on the RPi Zero W, RPi Zero 2 W, RPi 3B, RPi 
3B+, and RPi 4B. The curves can be divided into three parts: 
(1) a 150-second idle portion for phase 2, (2) a 300-second 
stress activity for phase 3, and (3) a 150-second idle portion for 
phase 4. When running Stressberry without specifying the 
number of cores, the tools will activate all of them. The RPi 
Zero W just has one core, and its maximum temperature went 
barely over 45°C during the stress activity. All the other RPis 
have four cores, that were activated by Stressberry in this 
experiment. According to this test, the RPi 3B+ has the highest 
baseline temperature, while the RPi 3B has the highest 
temperature during the stress period. It is noted that all the tests 
of Fig. 3 correspond to naked RPis (no cases), and without any 
cooling solutions. That is, the small fan was not used for the 
RPi 4B in this experiment. 

The goal of Fig. 4 is to show how a cooling solution can 
significantly improve the temperature of the CPU. This 
experiment was conducted with an RPi 4B. The first curve (in 
orange) corresponds to running Stressberry without any 
additional heat control system, while a small fan was used for 
the second curve (in black). The minimum difference is greater 
than 10°C, and in the best case, it is almost 25°C. It is worth 
mentioning that the results will significantly vary with the 
chosen cooling solution (heat sink, fan, a combination of heat 
sink and fan, specific cases, etc.) and its size. 

Fig. 5 aims to determine the impact on the temperature of 
an RPi, when overclocked or not. The experiment was 
conducted by running Stressberry on an RPi Zero 2 W. The 
figure has four curves, two for the RPi not overclocked 
(temperature and CPU frequency) and two for the RPi 
overclocked at 1300 MHz (temperature and CPU frequency). 
In the initial 150-second idle portion, the temperature was the 
same since the CPU frequency mainly stayed at 600 MHz for 

both cases. In the 300-second portion of stress, the CPU 
frequency was steady at 1000 MHz for the RPi not 
overclocked. However, when overclocked, the CPU frequency 
started at 1300 MHz and went down to 1000 MHz in the intent 
to control the rising temperatures. In the final 150-second idle 
portion, the CPU frequency mainly stayed at 600 MHz for both 
cases, allowing the temperatures to fall down toward the 
baseline temperature. 

Fig. 6 shows the effect on the temperature of a RPi, when 
varying the number of cores. The experiment was carried out 
by running Stressberry on an RPi Zero 2 W not overclocked, 
activating 1, 2, 3, and 4 cores, respectively. As expected, when 
under stress, the temperatures get higher with the increasing 
number of cores. 

 

Fig. 3. Results of Stressberry for Different RPi Models. 

 

Fig. 4. Results of Stressberry for an RPi 4B with/without Fan. 

 

Fig. 5. Results of Stressberry for the RPi Zero 2 W when Overclocked and 

when Not. 
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Fig. 6. Results of Stressberry for the RPi Zero 2 W when Varying the 
Number of Cores. 

B. CPU Performance with 7-Zip 

The 7-Zip archiving tool [26][27] can be used to pack and 
compress files into archives, as well as to extract the files from 
archive formats such as ZIP or 7z. It also has a benchmarking 
tool built inside it, that assesses the power of a CPU through 
the LZMA [28] (Lempel–Ziv–Markov chain Algorithm) 
compression and decompression. The tool reports how fast a 
CPU processes the compression and decompression 
instructions over dummy data, displaying the results in MIPS 
(Million Instructions Per Second). Fig. 7 shows the instructions 
that we used to install and execute the 7-Zip benchmark. Line 
01 installs the tool, while the manual is consulted in Line 02. 
Lines 03-05 run the benchmark for 1, 2, and 4 threads, 
respectively. Since the RPi Zero W only has one core, Lines 
04-05 were not executed on this RPi. 

01: apt-get install p7zip 

02: man 7zr 

03: 7zr b -mmt1 

04: 7zr b -mmt2 

05: 7zr b -mmt4 

Fig. 7. Installation and Execution of the Benchmark of 7-Zip. 

Fig. 8 and 9 depict the results obtained for the CPU 
assessment with 7-Zip for compression and decompression, 
respectively. The dictionary size was 2

23
 = 8 MB. There are 

two results for the RPi Zero 2 W: one without overclocking, 
and the other with overclocking the device at 1.3 GHz. It is 
significantly noticeable how the RPi 4B outperformed all the 
other RPis. Overclocking the RPi Zero 2 W boots its CPU 
performance. The RPi Zero 2 W overclocked, RPi 3B, and RPi 
3B+ have similar performance. 

C. CPU Performance with Sysbench 

Sysbench [29] is a scriptable multi-threaded benchmark 
tool based on LuaJIT. Sysbench has several tests (cpu, memory, 
fileio, threads, and mutex) for the CPU performance, 
memory speed, file I/O access, threads subsystem performance, 
and mutex performance, respectively. 

 

Fig. 8. Compression Rating with 7-Zip for Different RPi Models. 

 

Fig. 9. Decompression Rating with 7-Zip for Different RPi Models. 

In this experiment, we evaluated the CPU performance of 
the different RPis with Sysbench. The test consists in 
generating random numbers and verifying if they are prime or 
not, by doing standard divisions of any selected number by all 
integers between 2 and the square root of this number. If any 
division gives a remainder of 0, Sysbench starts over by 
generating a new random number and trying again. The results 
are reported in events/sec. Fig. 10 gives the instructions that we 
used to install are run the CPU performance test. Sysbench was 
installed with Line 01, and the manual was consulted in Lines 
02-03. Lines 04-06 run the CPU performance test for 1, 2, and 
4 threads, respectively. We limited the total execution time to 
20 seconds, and the randomly generated numbers to be tested 
were inferior to 20,000, as specified by the options of the 
commands. 

01: apt-get install sysbench 

02: sysbench --help 

03: sysbench cpu help 

04: sysbench cpu --threads=1 --time=20 --cpu-max-prime=20000 run 

05: sysbench cpu --threads=2 --time=20 --cpu-max-prime=20000 run 

06: sysbench cpu --threads=4 --time=20 --cpu-max-prime=20000 run 

Fig. 10. Installation and Execution of Sysbench to Assess the CPU 

Performance. 

Fig. 11 depicts the results that we obtained for this test. It is 
noted that the RPi Zero W has a result only for one thread. This 
test confirms the results obtained in Section IV.B with 7-Zip, 
where the RPi 4B dramatically outperformed the other RPis. 
Overclocking the RPi Zero 2 W improved its performance. 
Moreover, the RPi Zero 2 W overclocked, RPi 3B, and RPi 
3B+ have a similar performance. 
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Fig. 11. CPU Performance with Sysbench for Different RPi Models. 

D. Memory Speed with Geekbench and STREAM 

We initially utilized Sysbench [29] to benchmark the read 
and write access performance of the memory (RAM) of the 
RPis. However, we did not get consistent results. Similar 
problems were reported in [30]. Hence, we opted to use 
Geekbench [31] and STREAM [32][33]. 

Geekbench [31] is a cross-platform benchmark program 
(Windows, macOS, Linux i386/amd64, Android, iOS, etc.) that 
reports performance related to the integer arithmetic, floating-
point arithmetic, and memory. It is a commercial product from 
Primate Labs; however, a limited version can be downloaded 
and used for free. At the level of the memory assessment, the 
older versions of Geekbench [34] has four convenient tests: (1) 
“Read Sequential” that loads values from memory into 
registers, (2) “Write Sequential” that stores values from 
registers into memory, (3) “Stdlib Write” that writes a constant 
value to a block of memory using functions from the C 
Standard Library (memset), and (4) “Stdlib Copy” that copies 
values from one block of memory to another using functions 
from the C Standard Library (memcpy). Fig. 12 shows the 
results that we obtained for “Read Sequential”, “Write 
Sequential”, “Stdlib Write”, and “Stdlib Copy”, respectively, in 
MB/sec. The RPi Zero W has the poorest performance. The 
experiment seems to indicate that the RPi Zero 2 W 
overclocked, RPi 3B, and RPi 3B+ have a similar memory 
access, for both reading and writing. The RPi 4B significantly 
outperformed the other devices under test. 

 

Fig. 12. Results of the Memory Performance with Geekbench for Different 

RPi Models. 

STREAM [32][33] is a synthetic benchmark designed to 
measure sustainable memory bandwidth and the corresponding 
computation rate for four simple vector kernels: Copy, Scale, 
Add, and Triad. Copy just transfers data from one memory 
location to another, i.e., copies it (A[i] = B[i]). Scale takes the 
value of the first location and multiplies it with a certain 
constant, before storing it in a second place, i.e., scales it (A[i] 
= m*B[i]). Add reads data from two different locations, adds 
them up and writes the result to a third place (A[i] = B[i] + 
C[i]). Triad reads data from a first location, scales it, then adds 
data from a second one and writes to a third place (A[i] = 
m*B[i] + C[i]). Fig. 13 displays the steps that we followed to 
download, compile, and run STREAM. Notice that STREAM 
can be compiled with or without OpenMP [35]–[37] support. 
Lines 01-02 installed Git (a revision control system) and 
cloned the STREAM repository, respectively. In Line 04, we 
compiled stream.c and specified that the elements of the 
unidimensional arrays are floating-point numbers in double 
precisions (double), the size of the arrays is 10 MB, each 
kernel should be run ten times, and activated support for 
OpenMP. Line 05 is optional. If not specified, one thread is 
activated for the RPi Zero W, and four threads for the other 
devices under test. 

01: apt-get install git 

02: git clone https://github.com/jeffhammond/STREAM.git 

03: cd STREAM 

04: gcc -o stream-bin -O3 -march=native -DSTREAM_TYPE=double \ 

 -DSTREAM_ARRAY_SIZE=10000000 -DNTIMES=10 -fopenmp stream.c 

05: export OMP_NUM_THREADS=<NUM_CPU_CORES> 

06: ./stream-bin 

Fig. 13. Download, Compilation, and Execution of STREAM to Assess the 

Memory Performance. 

Fig. 14 depicts the assessment of the different RPis with 
STREAM, using one thread for the RPi Zero W and four 
threads for the other RPis. It is noticeable how the RPi 4B 
outperformed the other SBCs. The RPi Zero W is much slower. 
The other devices under test performed similarly. 

 

Fig. 14. Results of the Memory Performance with STREAM for Different 

RPi Models. 

E. Sequential Access Performance on the MicroSD Card with 

Sysbench 

The goal of this experiment was to evaluate the sequential 
read and write access performance on the microSD card for the 
different RPis with Sysbench [29], for one thread. Fig. 15 
shows the instructions that we used to run the file access 
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performance test, for sequential readings. The manual was 
consulted in Lines 01-02. Line 03 generated 32 files of size 64 
MiB each, for a total of 2 GiB. Those files are the ones from 
which Sysbench performed the read operations during the test. 
In Line 04, the test was run for a block size of 1 kiB, for 20 
seconds. This line was executed several times, where the block 
size was varied to 2, 8, 32, 64, 128, 256, 512, 1024, and 2048 
kiB, respectively. Finally, Line 05 erased all the 32 temporary 
files created in Line 03. 

01: sysbench --help 

02: sysbench fileio help 

03: sysbench fileio --file-num=32 --file-total-size=2G prepare 

04: sysbench fileio --file-num=32 --file-total-size=2G \ 

 --file-extra-flags=direct --file-test-mode=seqrd \ 

 --file-block-size=1k --time=20 run 

05: sysbench fileio --file-num=32 --file-total-size=2G cleanup 

Fig. 15. Execution of Sysbench to Evaluate the Sequential Read Assess 

Performance on the microSD Card. 

Fig. 16 presents the instructions used to benchmark the 
sequential write access performance on the microSD card, for 
the different RPis with Sysbench, for one thread. In this case, 
there is no need to pre-generate temporary files since Sysbench 
will not read, but write. In Line 01 the test was run for a block 
size of 1 kiB, for 20 seconds, writing files (up to 32 files with a 
maximum size of 64 MiB each). This line was executed several 
times, where the block size was varied to 2, 8, 32, 64, 128, 256, 
512, 1024, and 2048 kiB, respectively. Finally, Line 02 
removed all the files created in Line 01. 

01: sysbench fileio --file-num=32 --file-total-size=2G \ 

 --file-extra-flags=direct --file-test-mode=seqwr \ 

 --file-block-size=1k --time=20 run 

02: sysbench fileio --file-num=32 --file-total-size=2G cleanup 

Fig. 16. Execution of Sysbench to Evaluate the Sequential Write Assess 
Performance on the microSD Card. 

Fig. 17 and 18 depict the results that we obtained for the 
sequential read and write access performance, respectively, for 
the different RPis. The RPi Zero W has the poorest 
performance, while the RPi 4B has the best one. The RPi Zero 
2 W (overclocked or not), RPi 3B, and RPi 3B+ have a 
comparable performance. 

 

Fig. 17. Sequential Read Access Performance on the microSD Card with 

Sysbench for Different RPi Models. 

 

Fig. 18. Sequential Write Access Performance on the microSD Card with 

Sysbench for Different RPi Models. 

F. Sequential Write Access Performance on the microSD 

Card with dd 

This experiment aimed to evaluate the sequential write 
access performance on the microSD card for the different RPis 
with “dd”, for one thread. The command “dd” is a standard 
Unix/Linux tool to convert and copy files. Fig. 19 shows the 
instructions that we used to run the sequential write access 
performance test with “dd”. The manual was consulted in Line 
01. In Line 02, the test was run. Here, the tool created a 512 
kiB file by making 512 write operations, each one with a block 
size of 1 kiB. This last line was executed several times, where 
the block size was changed to 2, 8, 32, 64, 128, 256, 512, 1024, 
and 2048 kiB, respectively, creating files of 1, 4, 16, 32, 64, 
128, 256, 512, and 1024 MiB, respectively. 

01: man dd 

02: dd if=/dev/zero of=/home/pi/test bs=1k count=512 oflag=direct 

Fig. 19. Execution of “dd” to Evaluate the Sequential Write Assess 

Performance on the microSD Card. 

Fig. 20 depicts the results that we obtained for the different 
RPis. It is very similar to the performance results of Fig. 18. 

 

Fig. 20. Sequential Write Access Performance on the microSD Card with 

“dd” for Different RPi Models. 

G. Audio Conversion Performance with Phoronix Test Suite 

Phoronix Test Suite [38] (PTS) is a free and open-source 
framework for conducting automated performance tests. It is 
multiplatform, and the default version has more than 600 
individual test profiles and more than 200 test suites, covering 
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a wide range of applications such as audio format conversions, 
encryption and decryption algorithms, compression and 
decompression algorithms, timed compilation of widely-used 
open-source software, memory access performance, file access 
performance, etc. The framework is designed to be extensible 
so that new test profiles and suites can be easily added. 

We used PTS [38] to evaluate the performance of the RPis 
when converting/encoding sample WAV files to MP3 (encode-
mp3), sample WAV files to FLAC (encode-flac), sample WAV 
files to Monkey’s Audio APE (encode-ape), sample WAV files 
to WavPack (encode-wavpack), and sample WAV files to 
Opus (encode-opus). Fig. 21 shows the instructions that we 
used to install and run the audio conversion performance tests 
with PTS. First, the dependencies were installed in Line 01. In 
Line 02, PTS was cloned from GitHub. Lines 04-08 run the 
different conversion tests. 

01: apt-get install php-cli php-xml git 

02: git clone https://github.com/phoronix-test-suite/\ 

 phoronix-test-suite.git 

03: cd phoronix-test-suite 

04: ./phoronix-test-suite benchmark encode-mp3 

05: ./phoronix-test-suite benchmark encode-flac 

06: ./phoronix-test-suite benchmark encode-ape 

07: ./phoronix-test-suite benchmark encode-wavpack 

08: ./phoronix-test-suite benchmark encode-opus 

Fig. 21. Installation and Execution of Phoronix Test Suite to Evaluate the 

Performance of Audio Conversions. 

Fig. 22 depicts the audio conversion performance results in 
seconds. The lower is the conversion time, the better/faster is 
the RPi. The RPi Zero W had the longest conversion time, 
while the RPi 4B had the shortest. The RPi Zero 2 W 
overclocked, RPi 3B, and RPi 3B+ had similar performance. 

 

Fig. 22. Audio Conversion Performance with PTS for Different RPi Models. 

H. Other Performance Evaluation with Phoronix Test Suite 

We also utilized PTS [38] for other performance 
evaluations. The “openssl” test of PTS assesses (1) the 
number of digital signatures that can be performed per second 
and (2) the number of verifications of digital signatures that 
can be processed per second, using RSA with 4096-bit keys. 
Table I has the results that we obtained for the different RPis. 
In this test also, the RPi 4B had a much better performance. 
The RPi Zero 2 W overclocked, RPi 3B, and RPi 3B+ had 
comparable performances. 

TABLE I. SIGNING AND VERIFYING PERFORMANCE WITH PTS 

Test Signing (sign/sec) Verifying (verify/sec) 

RPi Zero W  2.6  176.1 

RPi Zero 2 W  39.4  2834.7 

RPi Zero 2 W (Over)  47.2  3380.2 

RPi 3B  45.9  3329.3 

RPi 3B+  46.4  3337.5 

RPi 4B  120.0  9126.4 

The total time required to compile an open-source software 
is considered a good benchmark to measure the performance of 
computers. PTS [38] offers several profiles to get a timed 
compilation of well-accepted software. Table II shows the 
results that we obtained to compile ImageMagick [39][40] (an 
application to create, edit, compose, or convert digital images) 
and MPlayer [41] (a movie player), using PTS. The big 
difference between the RPi Zero W and the other RPis can be 
partially explained by the options used with the “make” utility. 
PTS used “make -j1” for the RPi Zero W, and “make -j4” for 
the other RPis. This option specifies the number of jobs 
(commands) that can be run simultaneously during the 
compilation process. 

TABLE II. TOTAL TIME REQUIRED TO COMPILE OPEN-SOURCE 

SOFTWARE WITH PTS 

Test 
ImageMagick 

(Time in Seconds) 

MPlayer 

(Time in Seconds) 

RPi Zero W 7350.6 12990.6 

RPi Zero 2 W 825.7 1390.5 

RPi Zero 2 W (Over) 758.2 1196.0 

RPi 3B 773.9 1241.1 

RPi 3B+ 762.2 1204.4 

RPi 4B 388.4 507.6 

 

I. TCP Throughput with Iperf 

The goal of this experiment is to determine the maximum 
TCP throughput that can be obtained between two end-devices 
connected as specified in Fig. 1, where at least one RPi is 
utilized as an end-device. To do so, we used Iperf [42][43], a 
free, open-source command-line tool for network performance 
measurement between two network devices. It is based on the 
client/server model, and reports parameters such as the 
throughput, delay jitter, and packet loss. Iperf v2.0.14a is 
available as a pre-compiled package from the Raspberry Pi OS 
repositories. However, this version has limitations. Hence, we 
downloaded and installed a newer version (Iperf v2.1.n) for our 
experiments. We used Iperf to determine the “maximum” TCP 
throughput between the client and the server. When using this 
test, the client tries to overwhelm the server by creating a 
unidirectional TCP flow (from the client to the server) and 
sending as many segments as allowed by the TCP control 
mechanism (congestion window). At the end of the 
experiment, by default 10 seconds, the TCP throughput is 
displayed. 
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Fig. 23. TCP Throughput with Iperf when Varying the Roles of the RPis for 

Different RPi Models. 

Fig. 23 depicts the TCP throughput that we obtained in 
three different scenarios: (1) both the client and server were 
RPis of the same models, (2) the client was an RPi while the 
server was a PC, and (3) the client was a PC while the server 
was an RPi. The specifications of the PC were given in Section 
III.C. It is worth noting that in the first group of bars, there are 
only four bars, corresponding to two RPi Zero W (blue bar), 
two RPi Zero 2 W not overclocked (green bar), two RPi Zero 2 
W overclocked (purple bar), and two RPi 3B (yellow bar). 
There are no bars for the RPi 3B+ and the RPi 4B, since we 
only had one of each of these SBCs. For this experiment, we 
set up the wireless router to use a maximum bandwidth of 145 
Mbps in the 2.4 GHz band. It is noted that all the RPis had a 
bitrate that capped out at 72.2 Mbps in this band. 

The best performance is obtained when the server is a PC 
(second group of bars), while the worst corresponds to the case 
of using two RPis of the same models (first group of bars) for 
the client and server. Since the PC that we used is more potent 
than the RPis, when used as a server, it is much faster to 
discard the received segments from the client, and then to 
reopen its TCP congestion window, allowing the client to send 
the TCP segments at a higher rate, resulting in a better 
performance for this case. 

The RPi 3B+ and RPi 4B are dual-bands. Hence, we also 
made some performance evaluations of the TCP throughput in 
the 5 GHz band, by setting up the wireless router to use a 
maximum bandwidth of 867 Mbps in the 5 GHz band. It is 
worth mentioning that the two RPis (RPi 3B+ and RPi 4B) had 
a bitrate that capped out at 433.3 Mbps in this band. Table III 
has the results that we obtained. By changing from the 2.4 GHz 
to the 5 GHz band, the improvement in throughput is 
noticeable. 

TABLE III. TCP THROUGHPUT WITH IPERF IN DIFFERENT BANDS FOR THE 

RPI 3B+ AND RPI 4B 

Test 2.4 GHz 5 GHz 

Client=RPi 3B+, Server=PC  34.80 Mbps  102.10 Mbps 

Client=PC, Server=RPi 3B+  28.50 Mbps  81.40 Mbps 

Client=RPi 4B, Server=PC  35.70 Mbps  104.25 Mbps 

Client=PC, Server=RPi 4B  27.90 Mbps  85.70 Mbps 

J. TCP Latency with our Own Benchmark 

The aim of this experiment is to determine the TCP latency 
to send a specific TCP payload from a source to a destination. 
To accomplish this objective, we wrote our own benchmark 
and used the testbed of Fig. 1, with an RPi as the source and a 
PC as a destination. The specifications of the PC were given in 
Section III.C. For this experiment, we set up the wireless router 
to use a maximum bandwidth of 145 Mbps in the 2.4 GHz 
band. Fig. 24 shows the results that we got for the TCP latency 
when varying the payload to be transmitted through TCP from 
100 to 10,000 bytes. The RPi Zero W has the longest latency, 
followed by the RPi Zero 2 W not overclocked. The RPi Zero 2 
W overclocked, RPi 3B, RPi 3B+, and RPi 4B had a similar 
performance. 

 

Fig. 24. TCP Latency with our Own Benchmark for Different RPi Models. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we evaluated the performance of a number of 
SBCs: RPi Zero W, RPi Zero 2 W, RPi Zero 2 W overclocked, 
RPi 3B, RPi 3B+, and RPi 4B. The RPi 4B significantly 
outperformed the other SBCs under test. So far, it is the most 
potent RPis released by the Raspberry Pi Foundation, with a 
basic price (board only) of US$35, US$45, US$55, and US$75 
for the 1, 2, 4, and 8 GB models, respectively. If used at its 
maximum power, a cooling solution is recommended; 
otherwise, the CPU will be throttled, resulting in slowing down 
the CPU frequency. Our study showed that the RPi Zero, 
released in February 2017, has limited capacity. It is the only 
32-bit processor of the study, with just one core. However, it 
might still be the solution for many projects with low CPU and 
RAM requirements. Its basic price of US$10 (board only) is 
very attractive for projects with a low budget. In general, the 
RPi Zero 2 W overclocked, RPi 3B, and RPi 3B+ had similar 
performances. In some tests, the RPi Zero 2 W overclocked 
had a light advantage, while the RPi Zero 3B+ was slightly 
better in other tests. The basic price (board only) for the RPi 
Zero 2 W, RPi 3B, and RPi 3B+ is US$15, US$35, and US$35, 
respectively. The RPi Zero 2 W is the last SBC released by the 
Raspberry Pi Foundation, with this amazing price. It has the 
same form factor as the RPi Zero W, allowing an easy upgrade 
when required. However, its limited RAM (512 MB) can be a 
limitation for some projects, compared to the 1 GB of the RPi 
3B and RPi 3B+. 
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When Ethernet is a project requirement, the RPi 3B, RPi 
3B+, and RPi 4B have an integrated port. They offer Fast 
Ethernet (100 Mbps), Gigabit Ethernet over USB 2.0 
(maximum throughput 300 Mbps), and Gigabit Ethernet, 
respectively. For the other SBCs of this study, Ethernet can still 
be added through a USB port. However, this solution should be 
considered only in existing projects as an extension, since new 
projects will be more cost-effective when using RPis with 
native Ethernet support. 

The RPi 400 [44] was not studied in the paper. It is a 
keyboard that incorporates an RPi 4B into it, with minor 
modifications. It is the easiest way to build a desktop computer 
based on an RPi. Even if they are mostly identical, the 
Raspberry Pi Foundation releases the RPi 400 with its 
Broadcom BCM2711 processor clocked at 1.8 GHz, while the 
RPi 4B was set to 1.5 GHz in previous versions of the 
Raspberry Pi OS. This is just due to an integrated robust 
cooling solution in the keyboard of the RPi 400. However, the 
last version of the Raspberry Pi OS (October 2021) now also 
sets the Broadcom BCM2711 processor of the RPi 4B at 1.8 
GHz. Hence, as specified in Section III.A, the CPU of our RPi 
4B was set to 1.8 GHz for all our experiments. 

The RPi 3B+ is an improved version of the RPi 3B. The 
main difference is in the upgraded support for the network 
connection. According to the Raspberry Pi Foundation website, 
the RPi 3B will remain in production until at least January 
2026 [22]. Both (RPi 3B and RPi 3B+) have the same price: 
US$35 for the board only. In most of our experiments, they had 
a similar performance with a slight advantage for the RPi 3B+. 
Hence, for new projects that are planning to use the RPi 3B, 
our recommendation is to consider the RPi 3B+ instead. 

Even though a powerful processor means more heat and 
higher temperatures when running intensive CPU workloads, 
an interesting finding of this study is that the RPi 3B reached 
the highest temperature (more than 80º C) during the stress 
activity, which is significantly higher than the temperature 
reached by the RPi 3B+ and the RPi 4B for the same CPU 
workload. This shows that these two later models might have 
been improved in terms of heat management in comparison to 
their predecessor (RPi 3B). 

As future work, we plan to extend our study to other SBCs, 
such as the ones of BeagleBoard [45]. We are also interested in 
focusing our efforts on the network performance of IPv4 and 
IPv6, for both Ethernet and WiFi, in SBCs. 
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