
Jacksonville State University Jacksonville State University

JSU Digital Commons JSU Digital Commons

Research, Publications & Creative Work Faculty Scholarship & Creative Work

2020

An Algorithm based on VANET Technology to Count Vehicles An Algorithm based on VANET Technology to Count Vehicles

Stopped at a Traffic Light Stopped at a Traffic Light

Manuel Contreras
Central University of Venezuela

Eric Gamess
Jacksonville State University, egamess@jsu.edu

Follow this and additional works at: https://digitalcommons.jsu.edu/fac_res

 Part of the Applied Mathematics Commons

Recommended Citation Recommended Citation
Contreras, M., & Gamess, E. (2020). An Algorithm based on VANET Technology to Count Vehicles Stopped
at a Traffic Light. International Journal of Intelligent Transportation Systems Research, 18(1), 122.
https://doi.org/10.1007/s13177-019-00184-3

This Article is brought to you for free and open access by the Faculty Scholarship & Creative Work at JSU Digital
Commons. It has been accepted for inclusion in Research, Publications & Creative Work by an authorized
administrator of JSU Digital Commons. For more information, please contact digitalcommons@jsu.edu.

https://digitalcommons.jsu.edu/
https://digitalcommons.jsu.edu/fac_res
https://digitalcommons.jsu.edu/fac_scholarship
https://digitalcommons.jsu.edu/fac_res?utm_source=digitalcommons.jsu.edu%2Ffac_res%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.jsu.edu%2Ffac_res%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@jsu.edu

An Algorithm based on VANET Technology to

Count Vehicles Stopped at a Traffic Light.

Manuel Contreras. School of Computer Science, Central University of Venezuela, Los Chaguaramos,

Caracas, Venezuela. e-mail: mcontre@ula.ve.

Eric Gamess. MCIS Department, Jacksonville State University, Jacksonville, AL, USA. e-mail:

egamess@jsu.edu.

Manuel Contreras is the corresponding author.

An Algorithm based on VANET Technology to Count Vehicles Stopped at a

Traffic Light

Abstract Vehicular Ad hoc Networks (VANETs) have gained

considerable attention in the past few years due to their

promising applicability in relation to the Intelligent

Transportation Systems (ITSs). This emerging new

technology will provide timely information to develop

adaptive traffic light control systems that will allow a

significant optimization of the vehicular traffic flow. In this

paper, we introduce a novel algorithm for counting vehicles

stopped at a traffic light using VANET technology. The

algorithm is based on the idea of the propagation of a count

request message from the RSU (originating unit) toward the

vehicles that are at the end of the waiting line, and the

propagation of a response message (with the number of

vehicles counted) in the opposite direction, that is, from the

vehicles at the end of the line toward the RSU. For this, our

algorithm uses BEACON messages periodically to exchange

the necessary information between any two 1-hop neighbors.

Using the data received from BEACON messages, each

vehicle can maintain its own neighbors list. To validate and

evaluate the performance of our proposal, we use Veins

(Vehicle in Network Simulation) and TraCI (Traffic Control

Interface). The former is a framework that ties together a

network simulator (OMNeT++) with a road traffic simulator

(SUMO), and the latter is an API for the communications

between both simulators by providing TCP connections

between each other. The results of the simulations performed

in different scenarios are encouraging since they indicate that

the proposed algorithm efficiently computes a number of

vehicles very close to the real one, using a few control

messages.

Keywords: VANETs; Vehicular Networks; Vehicle

Counting; OMNeT++; SUMO; Veins.

1 Introduction

Vehicular Ad hoc Networks (VANETs) are aimed at
communications between vehicles [1]. They are similar to
Mobile Ad hoc Networks (MANETs), where mobile units are
vehicles, but with a very dynamic topology and density, high
speed, and a mobility bounded by the road infrastructure and
neighboring vehicles [2].

According to [3], the aim of VANETs is the development
of platforms for communications between moving vehicles and
between them and the road infrastructure. In VANET, there are
two types of networking units: (1) On-Board Units (OBUs) are
placed inside vehicles for communications to make them
“smart objects” rather than mere transportation tools and (2)
Road Side Units (RSUs) that are fixed and installed near the
road. A VANET allows two types of communications: (1)
communications between vehicles often referred to as Vehicle-
to-Vehicle (V2V) communications that take place between
OBUs, and (2) communications between vehicles and RSUs,

known as Vehicle-to-Infrastructure (V2I). Both modes of
communications can be performed using the same wireless
communication technology, such as IEEE 802.11p [4]. Also, a
VANET-enabled vehicle should be able to receive and relay
messages to other VANET-enabled vehicles in its
neighborhood (also known as multi-hop relaying) [1].

VANETs used short-range wireless communications (e.g.,
IEEE 802.11p [4]). A band of frequencies has already been
reserved by the Federal Communications Commission (5.850
to 5.925 GHz), and it is generally divided into channels of 10
MHz: 6 Service CHannels (SCHs) and 1 Control CHannel
(CCH) [4][5]. The SCHs are general purpose channels, that is,
they can be used for safety applications or not. The CCH is
reserved for safety applications. IEEE 802.11p also permits the
aggregation of two contiguous channels, to form a wider
channel with a bandwidth of 20 MHz. In the specialized
literature, this band of frequencies designated by the Federal
Communications Commission (FCC) is also known as
Dedicated Short Range Communication (DSRC).

Wireless Access in Vehicular Environments (WAVE) has
been proposed by the IEEE to specify the architecture for
VANETs. It is based on several documents for standardization.
The Physical (PHY) and the Medium Access Control (MAC)
layers of WAVE are presented in the IEEE 802.11p standard.
In the network layer, WAVE promotes the usage of two
protocols: (1) Internet Protocol version 6 (IPv6) and (2)
WAVE Short Message Protocol (WSMP). As known, IPv6 is
the successor of IPv4, and it can be used for most of the
applications. Unlike IPv6, WAVE is a very fast and light
protocol, focused on supporting safety applications. To manage
the seven channels that are not overlapped, IEEE 1609.4 [6]
introduces the multi-channel operations.

VANETs support a large number of Intelligent
Transportation System (ITS) applications, that will allow in the
not too distant future, the increase of the physical safety of
drivers and passengers, the optimization of daily traffic, the
notification of real-time road congestions, the propagation of
alerts of accidents or obstacles on the road, the distribution of
useful information for drivers (e.g., nearby restaurants, hotels,
gas stations), the access to social networks, file-sharing
services, or chats, as well as the connection to external
networks such as Internet.

The growing of traffic density on the roads of most towns
and cities around the world is becoming a problem. This
growing brings traffic congestion on the roads, resulting in
negative effects on traveling time, traffic safety, air pollution,
noise disturbance, and energy consumption. Therefore, the task
of controlling and optimizing the vehicular flows, in
agglomerations and their outskirts, is one of the main activities
of traffic engineering, seeking to benefit the communities.
Before tackling such a complex problem as the optimization of
vehicular traffic, the main point is to know how that traffic
behaves, i.e., to obtain reliable models of the same. How many
vehicles use a road section? Something as simple as that is hard

and expensive to know in most of our main cities. If we lack
the number of vehicles on a road, we cannot know or estimate
the occupation in a certain road section, or propose a dynamic
schedule for the traffic lights at an intersection, etc. However,
the actual ATCSs (Adaptive Traffic Control Systems) have
been using basic “in situ” technologies (e.g., inductive loops,
digital cameras, video cameras, thermal cameras, pneumatic
road tubes, magnetic sensors, radars, piezoelectric sensors,
infrared beams) to reduce road accidents and optimize traffic
flows, which could be dramatically improved with the
integration of emerging technologies such as VANET.

As stated before, in “Traffic Engineering”, a specific
problem to be solved is the development of algorithms to
optimize the cycles of traffic lights of a set of intersections and
thus achieve a greater vehicular flow with fairer waiting times
for all vehicles. Therefore, much research has been done in the
field of ATCSs [7] and traffic congestion detection [8][9][10]
to improve the flow of vehicles. As we have seen, there is no
single solution to solve the above problem. The range of
initiatives is wide, and many of them must be applied together
to get tangible results. However, to improve existing solutions
or to propose new ones, basic algorithms and tools must be
developed. An example of such tools is the counting of
vehicles with a specific characteristic or within a specified
geographical area. According to [11][12][13], there are some
alternatives or proposals for counting vehicles based primarily
on “in situ” technologies. These “in situ” technologies are
complex to install, and they suffer a high economic cost caused
by both, installation and recurring maintenance. Due to the
huge number of roads worldwide, alternatives to “in situ”
technologies must be considered. The VANET technology
seems to be a good option for vehicle counting and should
become ubiquitous promptly since it is estimated that all
vehicles will be equipped with a WAVE device within the next
15 years [14]. In addition, in the case of WAVE, the costs of
installing and maintaining the technology are shared between
the owners of the vehicles and the organization that maintains
the roads (town hall, city hall, county administration, state
government, highway administration, etc.) That is, the owner
of a vehicle will have to buy an RSU for his/her car, and will
have to pay the charges related to its maintenance. Local,
national, or international establishments will install and
maintain RSUs on the road infrastructure.

In this research work, we propose a novel algorithm to
count vehicles that are stopped at a traffic light based on
VANET technology, as a basic and integral tool for the
development of applications for the ITS. With the aim of
validating the proposed algorithm, we use a discrete event
network simulator called OMNeT++ in conjunction with a road
traffic simulator known as SUMO (Simulation of Urban
Mobility), and the Veins (Vehicle in Network Simulation)
framework that bidirectionally couples the previously
mentioned simulators. We test and analyze our proposal in
diverse scenarios, where we vary some parameters such as the
number of vehicles, the signal propagation range, the number
of lanes, the penetration rate, etc. The simulation results show
that our novel algorithm performs an efficient vehicle counting
very close to the real one, with a short response time and a
small number of control messages.

We have structured the rest of this paper in the following
way. First, we review the previous work in Section 2. Then, in
section 3, we introduce in details our novel algorithm to count
vehicles that are stopped at a traffic light using WAVE
technologies. Section 4 justifies our selection of the used
simulation tools and briefly describes the testbeds for the
validation of the proposed algorithm. A discussion of the
results obtained by our simulations is done in Section 5. In the
last section, we conclude and give directions for future work.

2 Related Work

Vehicle counting represents a tool that has numerous
applications, and due to its usefulness, it has been done in
various ways or disciplines with several technologies that
makes it applicable to diverse situations. Up to now, most of
the proposals to count vehicles, with greater or lesser accuracy,
are based mainly on methods or techniques supported by
conventional “in-situ” technologies (e.g., inductive loops,
digital cameras, video cameras, thermal cameras, pneumatic
road tubes, magnetic sensors, radars, piezoelectric sensors,
infrared beams) [15].

In the specialized literature, there are many methods,
techniques, and algorithms based on the “in situ” technologies
mentioned above. For example, there is a lot of work done with
images or recordings of digital or video cameras.
Chintalacheruvu and Muthukumar [16] proposed an efficient
video-based vehicle detection system constructed on top of
Harris-Stephen corner detector algorithm [17]. The algorithm
was used to develop a standalone vehicle detection and
tracking system that determines vehicle count and speed at
arterial roadways and freeways. The authors of [18][19]
employed images obtained from video cameras to count
vehicles in real time. Peiris and Sonnadara [20] used a single
digital camera to extract various traffic parameters, including
vehicle count, density, and type at a three-way junction.

Sensor networks have also been used to count vehicles.
Knaian [21] developed a low-cost package, based on
anisotropic magnetoresistive magnetic field sensors that can
count passing vehicles. According to the author, the sensors
can operate in the roadbed for at least ten years without
maintenance, and do not require running wires under the road,
facilitating a wide deployment. Litzenberger et al. [22]
proposed an embedded system based on an transient optical
sensor that is capable of detecting, counting, and measuring the
velocity of passing vehicles.

Contreras and Gamess [23] proposed an algorithm to count
objects (people, animals, devices, etc.) with wireless
technologies (IEEE 802.11) in circular-bounded areas, using
several non-overlapping communication channels. In the field
of counting vehicles based on VANET technologies, just a few
efforts have been made up to today. Gamess and Mahgoub [1]
proposed a method to obtain the length of a line of vehicles
stopped at a traffic light, by using VANET technology. The
algorithm is based on an effective propagation of a request
message from the beginning of the line (started by the traffic
light) towards the end, and the transmission of the
correspondent response message from the last vehicle to the
traffic light, using multi-hop, with the expected length.

According to the authors, a possible approximation of the
number of vehicles can be obtained by dividing the resulting
length by a constant value (e.g., 7 meters), where 7 meters
represents the average space to accommodate a vehicle in a
line. Unlike the present work, the counting obtained in [1] is an
approximation.

Some other works do not count, but estimate the density of
vehicles in a specific region. In their work, Luo, Wei, Cheng,
and Ren [24] developed an innovative query-response
framework which not only enables vehicles to detect the traffic
crowdedness of their surrounding region, but also enables
vehicles to obtain the remote region traffic crowdedness by
sending query messages and fusing reply messages.

Generally speaking, a considerable amount of work has

been done with “in-situ” technologies to count vehicles in

different scenarios. However, algorithms based on VANET

technologies are still very rare, and new proposals are welcome

to consolidate this area of knowledge.

3 Algorithm to Count Vehicles that are Stopped at a

Traffic Light, using VANET Technologies

In this section, we describe our novel algorithm to count

vehicles that are waiting for the traffic light to change from

red to green.

3.1 Requirements and Assumptions

Note that in this paper, we use the word “unit”

interchangeably with the word “vehicle”. They are one and the

same. Also, we call “originator” the RSU which initiates the

counting process, i.e., the entity that requires the number of

vehicles around it, up to a specified range or hop count (called

Hop Limit in our algorithm). As can be seen, the field Hop

Limit delimits the counting range, so that application

developers will have to select this parameter according to their

needs. In our simulations, the RSU starts counting with a value

of Hop Limit equal to 3, but any value can be used according to

the type of applications where the algorithm will be used.

For the implementation of our novel algorithm, we only

require the usage of a unique channel, of the seven channels

that are available in the DSRC band (5.850–5.925 GHz) [25].

We also assume that each vehicle is capable of determining its

actual position on the road using, for example, location

services like the Global Positioning System (GPS) [26]. In our

work, the location is specified through the latitude and the

longitude. However, the same algorithm can be modified to

use Cartesian coordinates, by choosing an origin and the

direction of the axis. The vehicles that do not have a WAVE

device will not be counted, since there is no way to detect

them (a penetration rate of 100%). Additionally, the algorithm

requires symmetric radio ranges, i.e., there is no one-way

communication between two vehicles (if vehicle V1 can

communicate with vehicle V2, a transmission from V2 will

also reach V1).

3.2 Structure of Unicast COUNT_REQUEST and

COUNT_REPLY Messages

The COUNT_REQUEST and COUNT_REPLY messages are
unicast messages propagated by the RSU and the vehicles in
the process of counting vehicles stopped at a traffic light.
When starting the counting, the RSU will send a unicast
COUNT_REQUEST message toward the last vehicle in the
line of waiting vehicles, and later this last vehicle will respond
with a unicast COUNT_REPLY message that will be
transmitted toward the RSU. Both messages have the same
Protocol Data Unit (PDU) and are composed of 10 fields (see
Fig. 1).

Fig. 1 COUNT_REQUEST and COUNT_REPLY Messages

The field Unit ID represents the identification of the sender

vehicle or RSU. The value of Unit ID must be unique. Message

Type can be either 0 or 1 and is used to identify the type of

message. A value of 0 identifies a COUNT_REQUEST, while

1 is for a COUNT_REPLY. Sequence Number is used to match

COUNT_REQUEST messages with COUNT_REPLY

messages and to distinguish between different requests. The

RSU and the vehicles transmit COUNT_REQUEST messages

along with the argument Hop Away which represents the

number of hops-away the receiver of the message is from the

RSU. The RSU is the unit that initiates the process of counting

specifying a value of Hop Away equal to 1. Each vehicle that

retransmits the COUNT_REQUEST message shall increment

this value by 1. The units will discard the message when the

value of Hop Away is greater than Hop Limit. The field Hop

Limit is a way to control how far away COUNT_REQUEST

messages can be forwarded. It delimits the counting range.

Timestamp is set by the RSU when it sends the

COUNT_REQUEST message. It is a timestamp taken by the

RSU at the moment of sending the COUNT_REQUEST

message and is aimed to control out-of-date messages and

replay attacks. Message Direction indicates in which direction

the message must be transmitted. For this, the four least

significant bits of the Message Direction field are used to

indicate one of four possible directions (North, South, East,

and West). For example, if the message must be transmitted in

all directions, then all lowest four bits of the field Message

Direction must be set to 1 (1111). RSU Position is the position

(latitude and longitude) of the RSU, and is set by the RSU

when sending the COUNT_REQUEST message. Farthest

Position is the location (latitude and longitude) of the actual

known unit that is farthest away from the RSU in the line of

vehicles. Number Vehicles is set with the number of vehicles

counted up to now during the transmission of the

Sequence

Number
Message

Type
Hop

Away

Hop

Limit
Timestamp

RSU

Position

2 bytes 2 bytes 4 bytes 2 bytes 2 bytes 4 bytes 1 byte 8 bytes

Message

DirectionUnit ID
Farthest

Position

Number

Vehicles

8 bytes 4 bytes

COUNT_REQUEST message. In other words, before the

retransmission of a COUNT_REQUEST, a unit must update

the value of this field by adding the number of valid neighbors

stored on its neighbors list. In the forwarding of

COUNT_REPLY messages back to the RSU, its value is not

altered.

3.3 Structure of BEACON Messages

The PDU of BEACON messages is composed of 4 fields as
depicted in Fig. 2.

Fig. 2 Structure of a BEACON Message

Unit ID refers to the sender identification. Timestamp is the
actual time set by the unit when it sends a BEACON message.
The synchronization of time between the different units is
solved with the time received from the GPS satellites. Sender
Position and Sender Speed represent the actual position
(latitude and longitude) and speed of the unit when it sends the
BEACON message, respectively.

3.4 Discovery Protocol for Neighboring Vehicles

As stated before, we propose a discovery protocol of 1-hop
neighbors that helps in the transmission of both the
COUNT_REQUEST messages started by the RSU and the
COUNT_REPLY messages started by the last vehicle, in the
opposite direction.

Fig. 3 Flow Diagram for Updating the Neighbors List

Our algorithm uses BEACON messages to periodically
exchange the necessary information between any two in-range
neighbors to maintain a list of 1-hop neighbors. The number of
neighboring vehicles around one unit can be easily obtained
from its neighbors list. Every unit periodically broadcasts
BEACON messages that include its Unit ID, a timestamp, and
its actual position and speed (see Fig. 2), so that, 1-hop
neighbors are aware of its presence, position, and speed.
Position and speed are obtained by units from their GPS
receivers. When a vehicle receives a BEACON message, it first
checks the Timestamp field (see Fig. 2) to validate that the
BEACON message is current and not a copy of a previous
message injected by a replay attack. If the Timestamp is valid,

then the unit checks whether or not the Unit ID exists in its list
of 1-hop neighbors. If the Unit ID does not exist, a new entry is
created and the information of this neighbor is stored.
Otherwise, the information of the fields Sender Position and
Sender Speed for the sending vehicle are just updated as well
as the associated timer. With this information, the unit can
interpolate the actual position of its 1-hop neighbors at any
time. Moreover, entries in the neighbors list that are not
updated during a certain period of time will be considered stale
and then removed. The flow diagram for creating a 1-hop
neighbors list using BEACON messages is given in Fig. 3. The
BEACON interval is set to 1s to ensure that the information in
the neighbors list is always up-to-date.

Sender PositionTimestamp Sender Speed

2 bytes 4 bytes 8 bytes 8 bytes

Unit ID

Idle

Timer for periodic BEACON

message has expired

Timer for an entry in the

Neighbors List has expired

Remove entry from the

Neighbors List

BEACON

message arrived

Yes

abs(TS(Local)-TS(Received))

‹
Delta?

No
Discard BEACON

Does Sender ID exist

in the Neighbors List?

No

Yes

Send a BEACON message

as a broadcast

Initialize timer for a new

periodic BEACON

Create a new entry in

the Neighbors List

Initialize timer

for the new entry

Update the entry in

the Neighbors List

Reset timer

for this entry

3.5 Algorithm

Beside of the neighbor discovery protocol described before, the
basic approach of the algorithm is:

1) Propagate a unicast COUNT_REQUEST, from the RSU
toward the vehicle that is farther away in the line of
vehicles, with the total number of vehicles counted up to
now (called Number Vehicles in our algorithm)

2) Propagate a unicast COUNT_REPLY in the opposite
direction, i.e., from the last vehicle in the line toward the
RSU, with the total number of vehicles calculated
according to the propagation of the previous
COUNT_REQUEST message.

Fig. 4 depicts a simplified flow diagram for the procedure
followed by the RSU in the counting algorithm. The RSU starts
the vehicle counting by sending a unicast COUNT_REQUEST
message (see Fig. 1) with its own geographic location in the
field RSU Position, toward the last unit in the line of waiting
vehicles. For this, the RSU will determine and put in the
Farthest Position field the location (latitude and longitude) of
the vehicle that is farther away from it in the line and within its

propagation range. The RSU will also set in the field Number
Vehicles the result of computing the total number of vehicles in
its neighbors list, that are waiting in the line. Additionally, the
RSU will specify a value of Hop Away equal to 1 and put a
time sample in the Timestamp field.

Now, when the RSU receives a COUNT_REPLY message,
it will first validate its Timestamp field. If the timestamp is not
within the expected interval of time, the COUNT_REPLY is
discarded. Otherwise, the RSU will obtain the total number of
vehicles in the field Number Vehicles.

It is worth to point out that not all the entries that are in the
neighbors list of the RSU are valid for the counting. That is, the
neighbors list also includes vehicles that are moving in the
opposite direction and vehicles that have already passed the
traffic light. However, the vehicles in the reverse direction can
be easily discarded in accordance to their speed. Also, the
actual location can be used to distinguish vehicles that have
already passed the traffic light.

Fig. 4 Flow Diagram of the Procedure Followed by the RSU to Count Vehicles Stopped at a Traffic Light

Idle

Timer for periodic BEACON

message has expired Timer for an entry in the

Neighbors List has expired

Remove entry from the

Neighbors List

Send a BEACON message

as a broadcast

Initialize timer for a new

periodic BEACON

BEACON

message arrived

Yes

abs(TS(Local)-TS(Received))

‹
Delta?

No
Discard BEACON

Does Node ID exist

in the Neighbors List?

No

Yes

Create a new entry in

the Neighbors List

Initialize timer

for the new entry

Update the entry in

the Neighbors List

Update timer

for this entry

COUNT_REPLY

message arrived

Yes

abs(TS(Local)-TS(Received))

‹
Delta?

No

Do the

corresponding process

Discard COUNT_REPLY

Send the COUNT_REQUEST

message to Farthest Position

Determine Farthest Position from

the RSU in the Neighbors List

NumVehi ═ NumUnits

Compute NumUnits

from the Neighbors List

The RSU needs to proceed

with a new counting

The previous sent

COUNT_REQUEST
message has timed out

Fig. 5 depicts a simplified flow diagram for the procedure
followed by the vehicles in the counting algorithm. When a
vehicle receives a COUNT_REQUEST message, it will first
validate the fields Timestamp and Hop Away. If the timestamp
is not within the expected interval of time or the number of
hops has been exceeded, the COUNT_REQUEST is discarded.
Otherwise, the behavior of the vehicle will depend on whether
or not it is the last unit of the line, or whether or not the field
Hop Away is equal to the field Hop Limit. If so, the vehicle will
start to send a unicast COUNT_REPLY message back to the
RSU. As can be appreciated, only this “last unit” in the line is
responsible for eliminating the COUNT_REQUEST and
replacing it by a COUNT_REPLY that moves in the opposite
direction. It is a copy of the COUNT_REQUEST message with
Message Type equal to 1 (to indicate a COUNT_REPLY) and a
Unit ID field updated to the correct ID. Note that the value of
Hop Away and Farthest Position are not modified during the
propagation of the COUNT_REPLY, allowing the RSU to
know how far away (in hops and in meters), the counting was
done. Otherwise, if the vehicle is not the “last one” of the line,
then it will make the following modifications: (1) increment by

1 the Hop Away field, (2) update the field Number Vehicles
based on the information from its neighbors list, (3) determine
the farthest vehicle from the RSU in the line within its range,
and (4) resend the COUNT_REQUEST message to the unit
defined in the Farthest Position field.

Now, when a vehicle receives a COUNT_REPLY message,
it will first validate its Timestamp field. If the timestamp is not
within the expected interval of time, the COUNT_REPLY is
discarded. Otherwise, the vehicle will determine from its
neighbors list the closest unit to the RSU (the next forwarder)
in the line, within its propagation range, and will resend the
COUNT_REPLY message to this unit. It is obvious that if the
originating RSU is within the propagation range of the vehicle,
the COUNT_REPLY message will be sent to it directly.

New units can be added in the line of waiting vehicles at
any moment. If an RSU had already made a counting before
the arrival of new vehicles, this RSU would not be informed
about the change, unless it starts a new counting. That is, the
proposed algorithm is based on the request/response model,
and the counting obtained only applies for a specific time.

Fig. 5 Flow Diagram of the Procedure Executed by Vehicles to Count Units Stopped at a Traffic Light

3.6 Example of Propagation

In this section, we present an example of the propagation of a

COUNT_REQUEST (Fig. 6) and a COUNT_REPLY (Fig. 7)

in a scenario with one lane and 18 vehicles, where V1, V2, V3,

…, V18, are the vehicles in the line that are stopped at a traffic

light waiting for the green light. Circles around the units

represent the propagation range of messages

(COUNT_REQUEST, COUNT_REPLY, and BEACON) sent

Idle

Timer for periodic BEACON

message has expired Timer for an entry in the

Neighbors List has expired

Remove entry from the

Neighbors List

Send a BEACON message

as a broadcast

Initialize timer for a new

periodic BEACON

BEACON

message arrived

Yes

abs(TS(Local)-TS(Received))

‹
Delta?

No
Discard BEACON

Does the Node ID exist

in the Neighbors List?

No

Yes

Create a new entry in

the Neighbors List

Initialize timer

for the new entry

Update the entry in

the Neighbors List

Update timer

for this entry

COUNT_REPLY

message arrived

Yes

abs(TS(Local)-TS(Received))

‹
Delta?

No

Discard COUNT_REPLY

COUNT_REQUEST

message arrived

Yes

abs(TS(Local)-TS(Received))

‹
Delta?

No

HopAway › HopLimit

The node is the last of the line?

or

HopAway ═ HopLimit

Discard COUNT_REQUEST

Determine the Closest Position

to the RSU in the Neighbors List

Send COUNT_REPLY

message to Closest Position

HopAway ═ HopAway + 1

Compute NumUnits from the

Neighbors List

NumVehi ═ NumVehi+NumUnits

Determine the Farthest

Position from the RSU in the
Neighbors List

Update Farthest Position in the

COUNT_REQUEST message

Send COUNT_REQUEST

message to Farthest Position

Yes No

Yes

No

Determine the Closest Position

from RSU in Neighbors List

Send COUNT_REPLY

message to Closest Position

by the units. To facilitate the explanation of the example, we

will assume that the radius of the propagation range of a

message is equivalent to five vehicles. In a real scenario, it will

be bigger than five vehicles since the range of DSRC is

targeted to be up to 1 km [1]. The basic operation of the

algorithm is as follows: Before the initiation of the counting

process, the RSU will listen to BEACON messages to discover

vehicles that are within its propagation range. In this case, the

RSU will detect the presence of V1, V2, V3, V4, and V5 that are

waiting for the green light, where V5 is the farthest away

vehicle from the RSU. Therefore, the RSU will transmit a

unicast COUNT_REQUEST message to V5 (see Fig. 6) with

Hop Away equal to 1, Farthest Position with the location of

V5 (the next forwarder), and Number Vehicles set to 5. Using

the information from its neighbors list, V5 determines that

there are five vehicles (V6, V7, V8, V9, and V10) that are

waiting in the line and are farther away from the position

specified in the field Farthest Position of the received

COUNT_REQUEST. So, vehicle V5 resends the

COUNT_REQUEST to V10 with the appropriate changes by

incrementing by 1 the value Hop Away (its new value is 2),

setting the location of V10 in the Farthest Position field (the

farthest unit from the RSU discovered by V5), and adding 5 to

Number Vehicles (its new value is 10). The process of

counting will continue with the transmission of the

COUNT_REQUEST by vehicle V10, followed by vehicle V15

(see Fig. 6). In this case, vehicle V10 will resend the

COUNT_REQUEST message with Hop Away equal to 3,

Farthest Position set to the location of vehicle V15, and

Number Vehicles equal to 15, whereas V15 will resend the

COUNT_REQUEST message with Hop Away equal to 4,

Farthest Position set to the location of vehicle V18, and

Number Vehicles equal to 18. Vehicle V18 will know that it is

the last vehicle in the line according to information from its

neighbors list. Hence, V18 will start the process of the

propagation of the COUNT_REPLY message (with Number

Vehicles equal to 18) back to the RSU (see Fig. 7).

Fig. 6 Propagation of the COUNT_REQUEST Message

We can observe in Fig. 7 that vehicle V18 initiates the process

of the propagation of the unicast COUNT_REPLY message

back to the RSU, by sending it to V13, the closest unit to the

RSU discovered by V18. This message is a copy of the

COUNT_REQUEST received with small changes (Unit ID and

Message Type are the only modified fields). That is, the

following important fields will be kept unchanged: Hop Away

equal to 4, Farthest Position set to the location of vehicle V18,

and Number Vehicles equal to 18. When vehicle V13 receives

the COUNT_REPLY, it will resent it to V8 according to the

result of the selection of the closest unit to the RSU from its

neighbors list. The above process will continue in sequence

with the retransmission of the COUNT_REPLY message by

vehicles V8 and V3, up to the RSU. Finally, when the RSU

receives the COUNT_REPLY from V3, it simply processes

the results obtained in the PDU.

Fig. 7 Propagation of the COUNT_REPLY Message back to the RSU

4 Environments and Scenarios for Simulation

To evaluate the accuracy and performance of our novel
algorithm, we carried out extensive simulation experiments
with different sets of parameters. This section aims to present
the selected simulation tools and common parameters for this
evaluation.

4.1 Simulation Tools

Nowadays, there are numerous simulation tools ranging from
open source to commercial products. In any research work, it is
always important to choose the most appropriate. A
comprehensive study about current simulators, their
characteristics, capabilities, and approaches is provided in [27].

Up to now, there are no simulation tools that cover vehicle
mobility and networking, at the same time. That is, on the one
hand, vehicle mobility simulation tools have been proposed for
researchers in the field of traffic engineering. The objective of
these tools is to import road networks from well-known maps
(e.g., Google Maps or OpenStreetMap) and to generate realistic
vehicular traffic flows over the roads, by specifying some
constraints. On the other hand, networking simulators with
very basic mobility models are used by researchers in the area
of networking. For traffic engineering, some open-source
projects have been actively used by the community, such as
VanetMobiSim and Simulation of Urban MObility (SUMO)
[28]. Unfortunately, VanetMobiSim seems to be a dead project
now. Its last version (version 1.1) was released in February
2007. SUMO is an open source, highly portable, microscopic
and continuous road traffic simulation package designed to
handle large road networks. For network simulation, two open-
source simulators outstand (ns-3 and OMNeT++). OMNeT++
[29] is an open-source, multiplatform (Windows, MacOS, and
Linux), C++ based discrete event simulator for networking.
Through its GUI, users can create topology files and inspect
the state of each component during simulations [30].

To bridge the gap between the two worlds, some projects
propose a way to couple a road traffic simulator with a network

simulator, which seems to be the only viable solution in the
present time to do VANET simulations. For our work, we used
an open source bidirectional simulation framework called
Vehicles in Network Simulation (Veins) [31]. Veins couples
SUMO with OMNeT++ using the Traffic Control Interface
(TraCI) [32]. Veins already implements the WAVE protocol
stacks. It is most noticeable for IEEE 802.11p, IEEE 1609.4
multi-channel operation, and comprehensive models for the
MAC and PHY layers. We implemented the algorithm on top
of WAVE Short Message Protocol (WSMP) and IEEE
802.11p. Unlike the standard IP protocol, WSMP allows
applications to directly control the lower-layer parameters such
as transmission power, data rate, channel number, and receiver
MAC addresses.

We chose the Veins framework because it includes a
complete suite of models to make vehicular network
simulations as realistic as possible, without sacrificing the
speed of execution. Additionally, Veins offers interesting
features such as online reconfiguration and re-routing of
vehicles in reaction to the network simulator.

We simulated different scenarios where vehicles are
stopped at a traffic light. Table 1 summarizes the technical
parameters shared by all the scenarios and simulated cases of
our algorithm. For all our simulations, we selected WAVE
(IEEE 802.11p) for the wireless communication standard, with
a bitrate of 18 Mbps. The propagation model used in the
simulations was the two-ray ground model. We opted for this
model because it is suitable for predicting signal strength over
distances of several kilometers, so for a vehicular network
where distances can be long, it gives better results in terms of
accuracy compared with other models. It is worth to note that
the bitrate, modulation and coding were chosen based on [33].

Table 1 Simulation Parameters

Parameter Value

Type of roads Main roads

Length of Road Section 8 km

Wireless Standard IEEE 802.11p

Transmission Bitrate 18 Mbps

Transmission Power 20 mW (13 dBm)

Receptor Sensitivity -89 dBm

Thermal Noise -110 dBm

Message Type WSMP data

Channel Bandwidth 10 MHz

Frequency Band 5.850–5.925 GHz

Radio Propagation Model Two-ray ground

Simulation Time 120 seconds

Vehicle Beacon Interval 1 second

Another important point to consider is the definition of a
stopped vehicle at a traffic light. There is no doubt that it is a
complex topic, and it will vary from person-to-person. In our
simulations, we considered two cases. The first case is related
to vehicles that are close-by the RSU (at a distance inferior to
15 meters). These vehicles are considered stopped at the traffic
light if the light has been red for at least 0.5 seconds, and the
vehicles are immobile. For the vehicles that are at a distance of
15 meters or more from the RSU, we considered that they were
stopped if they were at a distance of 5 meters or less of another
stopped vehicle, and with a speed inferior or equal to 5 km/h.

5 Analysis of the Performance Results of our Simulations

This section discusses the results obtained for our experiments
in different scenarios.

In order to evaluate the accuracy and performance of the
proposed algorithm, we present and analyze some of the results
of our simulations that were executed mainly in three types of
scenarios: (1) scenarios with a one-way road of a single lane,
(2) scenarios with a one-way road of two lanes, and (3)
scenarios with a one-way road of three lanes. The one-way
road was 8000m long, and each lane was 3.6m in width (note
that ‘m’ as a unit notation corresponds to meters). We used
SUMO [28] to generate the vehicular movement patterns,
where the vehicles move with random speeds within the given
speed limit of the roads, and according to the vehicles ahead.
We run our simulations with different numbers of vehicles.

We consider scenarios where vehicles are equally injected
in time into the scenarios (entering the road every 0.5 seconds)
in an extremity and move toward the traffic light. The vehicles
move forward when the traffic light is green and slow down
and wait at red traffic light until the light turns green. Thus,
vehicles tend to form a line of vehicles where some of them are
stopped by the red traffic light, and others are moving toward
it.

We also considered a fourth scenario, where we simulate a
simple signalized intersection with two roads that cross each
other at right angles (see Fig. 14). We propose this fourth
scenario to study the impact of two-way traffic over the
algorithm, and see if it presents scalability issues. Finally, in
the fifth scenario, we study the impact of the penetration rate of
WAVE over the algorithm.

5.1 Scenarios with a One-way Road of One Lane

In this section, we study the accuracy and performance of the
algorithm in terms of the number of vehicles counted, the

associated response time to count the vehicles, and the number
of control messages (COUNT_REQUEST and
COUNT_REPLY) sent by the units during the counting, when
we vary the number of units and their propagation range in a
road with one lane. For all these scenarios, the RSU initiates
the counting process with a value of Hop Limit = 3.

Table 2 shows the number of units counted by our
algorithm when we varied the number of units (25, 50, 75, 100,
125, 150, and 175) and their propagation range (200m, 250m,
300m, 350m, and 400m). The results are represented as values
a/b, where a indicates the number of vehicles that are within
the scope of the RSU using multihop routing (i.e., vehicles that
should be counted) and b the number of vehicles actually
counted by our algorithm. For these experiments, we can see
that the algorithm has a high accuracy in the vehicle counting,
specifically for values of the propagation range equal to 300m,
350m, and 400m, even in conditions of high vehicular flow,
with an effectiveness between 97% and 100%, in the counting.
For example, for a number of units equal to 175 and a
propagation range of 300m, the RSU should count 175 units.
As shown in Table 2, our algorithm also counted 175 units,
being 100% effective in this case. There are some factors that
can contribute to the small error observed. The major is due to
missing information in the neighbors list of some vehicles, and
can be the result of BEACON messages that suffer collisions
or BEACON messages not sent on time.

Fig. 8 shows the performance of the algorithm for the

response time when we varied the number of units (25, 50, 75,

100, 125, 150, and 175) and their propagation range (200m,

250m, 300m, 350m, and 400m). For each number of units, the

results are shown in groups of five bars according to the

propagation range value, i.e., the first blue bar corresponds to

200m, the second cyan bar to 250m, the third purple bar to

300m, the fourth green bar to 350m, and the fifth yellow bar to

400m. Each of these bars represents the response time in

milliseconds (ms) for the proposed algorithm. We can note that

for any number of units, the response time is much lower for

higher values of the propagation range, specifically for values

equal to 350m and 400m. For example, for a number of units

equal to 100, the response time is equal to 24.98ms and

12.65ms for a propagation range of 250m and 400m,

respectively.

Table 2 Units Counted when Varying the Number of Units and

Propagation Range (Road with One Lane)

Total

Number

of Units

Propagation Range Values in Meters

200m 250m 300m 350m 400m

25 25/25 25/25 25/25 25/25 25/25

50 50/50 50/50 50/50 50/50 50/50

75 75/73 75/73 75/73 75/74 75/75

100 100/98 100/99 100/100 100/100 100/100

125 125/123 125/124 125/125 125/125 125/125

150 150/149 150/149 150/150 150/150 150/150

175 175/173 175/174 175/175 175/175 175/175

Fig. 8 Response Time in Different Scenarios during the Vehicle Counting (Road with One Lane)

Fig. 9 illustrates the behavior of the algorithm in terms of

the total number of COUNT_REQUEST and COUNT_REPLY

control messages transmitted by units during the counting of

vehicles, when we varied the number of units (25, 50, 75, 100,

125, 150, and 175) and their propagation range (200m, 250m,

300m, 350m, and 400m). We can see that for a given number

of vehicles, as we increase the propagation range, the total

number of control messages is reduced significantly. For

example, for a number of units equal to 175, the number of

control messages transmitted is equal to 16 and 10 for a

propagation range of 200m and 400m, respectively.

Fig. 9 Total Number of Control Messages Sent in Different Scenarios during the Vehicle Counting (Road with One Lane)

5.2 Scenarios with a One-way Road of Two Lanes

In this section, we study the accuracy and performance of the
proposed algorithm in terms of the number of vehicles counted,

the response time, and the total number of control messages
sent by the units during the counting, in scenarios where the
vehicles are stopped at a traffic light on a one-way road with
two lanes. At the beginning of the simulations, the vehicles

0

5

10

15

20

25

30

35

40

45

50

25 50 75 100 125 150 175

R
e

sp
o

n
se

 T
im

e
 (

m
il

li
se

co
n

d
s)

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

0

2

4

6

8

10

12

14

16

18

25 50 75 100 125 150 175

To
ta

l N
um

be
r

of
 C

on
tr

ol
 M

es
sa

ge
s

Se
nt

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

are distributed in both lanes with a total number of units
varying from 50 to 350. The RSU starts the counting process
with Hop Limit=3.

Table 3 contains the results that we obtained in the simulations
concerning the number of units counted. The results are
presented as values a/b, where a is the number of vehicles that
are within the scope of the RSU using multihop routing (i.e.,
vehicles that should be counted), and b is the number of
vehicles actually counted by our novel algorithm. As it can be
inferred from Table 3, our algorithm does well in this scenario,
and has a high accuracy in the vehicles counting. For example,
for a total number of 300 units and a propagation range of
350m, the RSU should count 300 units. In our simulations, our
proposed algorithm counted 293 units, resulting in a small
error of 2.3%.

Table 3 Units Counted when Varying the Number of Units and

Propagation Range (Road with Two Lanes)

Total

Number

of Units

Propagation Range Values in Meters

200m 250m 300m 350m 400m

50 50/50 50/50 50/50 50/50 50/50

100 100/99 100/100 100/100 100/100 100/100

150 150/147 150/147 150/147 150/147 150/148

200 200/194 200/194 200/194 200/194 200/197

250 250/242 250/242 250/244 250/244 250/246

300 300/289 300/292 300/293 300/293 300/297

350 350/323 350/327 350/329 350/331 350/334

In Figs. 10 and 11, we varied the total number of units (50,
100, 150, 200, 250, 300, and 350) and their propagation range
(200m, 250m, 300m, 350m, and 400m) with the aim of
evaluating the behavior of the algorithm with respect to the
response time and the total number of control messages sent by
the vehicles during the counting, respectively. The RSU started
the counting process with Hop Limit=3. According to our
simulations, the best results are obtained with values of the
propagation range of 350m and 400m. For example, for 300
units, we can see that the response time is 36.78ms (see Fig.
10) and the total number of control messages sent is 12 (see
Fig. 11) for a propagation range equal to 250m; while it is
25.86ms (see Fig. 10) and 8 messages (see Fig. 11) for a
propagation range of 350m. This behavior can be explained by
the fact that for a bigger propagation range and a queue length
that can be totally covered by the specified Hop Limit, the
number of actual hops to complete the counting is smaller. As
a result, the response time and the number of control messages
sent are smaller.

Fig. 10 Response Time in Different Scenarios during the Vehicle Counting (Road with Two Lanes)

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300 350

R
e

sp
o

n
se

 T
im

e
 (

m
ill

is
e

co
n

d
s)

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

Fig. 11 Total Number of Control Messages Sent in Different Scenarios during the Vehicle Counting (Road with Two Lanes)

5.3 Scenarios with a One-way Road of Three Lanes

In this section, we look at the behavior of the proposed
algorithm, in terms of the number of units counted, the
response time, and the total number of control messages sent
by the units during the counting in scenarios where the vehicles
are stopped at a traffic light on a one-way road with three
lanes. At the beginning of the simulations, the vehicles are
distributed in the three lanes with a total number of units
varying from 100 to 400. The RSU starts the counting process
with Hop Limit=3.

Table 4 shows the results of the experiments for scenarios
where we varied the total number of units (100, 150, 200, 250,
300, 350, and 400) and their propagation range (200m, 250m,
300m, 350m, and 400m). Similarly to the experiments of
Tables 2 and 3, our algorithm also has a high precision in the
counting of vehicles for these scenarios.

Table 4 Units Counted when Varying the Number of Units and

Propagation Range (Road with Three Lanes)

Total

Number

of Units

Propagation Range Values in Meters

200m 250m 300m 350m 400m

100 100/100 100/100 100/100 100/100 100/100

150 150/147 150/147 150/147 150/150 150/150

200 200/193 200/196 200/196 200/197 200/200

250 250/236 250/242 250/243 250/244 250/246

300 300/289 300/293 300/294 300/294 300/296

350 350/325 350/327 350/330 350/330 350/341

400 400/375 400/380 400/384 400/386 400/390

Figs. 12 and 13 show the results of the simulations for
scenarios where we varied the total number of units (100, 150,
200, 250, 300, 350, and 400) and their propagation range
(200m, 250m, 300m, 350m, and 400m) with the aim of
evaluating the behavior of the algorithm with respect to the
response time and the total number of control messages sent by
the vehicles during the counting, respectively. In all the
simulations, the RSU started the counting process with Hop
Limit=3. Again, the results of the simulations show good
response times with a small number of control messages sent
by the units during the counting of vehicles. Also, it is
important to mention that the best results are obtained for
propagation range values equal to 350m and 400m. For
example, for 400 units, we can see that the response time is
34.57ms (see Fig. 12) and the number of control messages sent
is 12 (see Fig. 13) for a propagation range equal to 200m;
while it is 20.26ms (see Fig. 12) and 6 messages (see Fig. 13)
for a propagation range of 400m.

We can see that the results obtained by the algorithm in terms
of counting were much more accurate in the scenarios with a
one-way road of a single lane (with a accuracy that varies from
97.3% to 100%) compared to those obtained with two (with an
accuracy of 92.3% to 100%) and three lanes (with a precision
that fluctuates from 92.9% to 100%). However, the response
times and the total number of control messages sent by the
units during the counting were lower in the scenarios with a
one-way road of three lanes.

0

2

4

6

8

10

12

14

16

50 100 150 200 250 300 350

To
ta

l N
u

m
b

e
r

o
f

C
o

n
tr

o
l M

e
ss

ag
e

s
Se

n
t

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

Fig. 12 Response Time in Different Scenarios during the Vehicle Counting (Road with Three Lanes)

Fig. 13 Total Number of Control Messages Sent in Different Scenarios during the Vehicle Counting (Road with Three Lanes)

5.4 Application of the Proposed Algorithm in a Scenario

with a Four-way Intersection

This section deals with the importance of estimating the
number of vehicles stopped at a traffic light in road
intersections, to improve vehicular traffic. For that, we study
the accuracy and performance of our algorithm using a four-
way intersection with multiple lanes on both sides (as shown in
Fig. 14).

0

5

10

15

20

25

30

35

40

100 150 200 250 300 350 400

R
e

sp
o

n
se

 T
im

e
 (

m
ill

is
e

co
n

d
s)

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

0

2

4

6

8

10

12

14

100 150 200 250 300 350 400

To
ta

l N
u

m
b

e
r

o
f

C
o

n
tr

o
l M

e
ss

ag
e

s
Se

n
t

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

Fig. 14 Outline of a Four-way Intersection

In Fig. 14, labels A, B, C, D, E, F, G, and H indicate the
segments of the roads. In the corners of the intersection, there
are traffic lights. These traffic lights are denoted as S1, S2, S3,
and S4. The arrows indicate the directions that should take the
vehicles when arriving at the intersection. Each traffic light
cycle is composed of four phases as described next:

(1) In the first phase (see Fig. 15), the traffic light S1
changes to green and the traffic lights S2, S3, and S4 to
red, so that the vehicles of segment A can cross the
intersection in direction to G, or turn right toward H, or
turn left in direction to F.

Fig. 15 First Phase of the Traffic Light Cycle at the Intersection

(2) In the second phase (see Fig. 16), the traffic light S2
changes to green and the traffic lights S1, S3, and S4 to
red, so that the vehicles of segment B can cross the
intersection in direction to H, or turn right toward E, or
turn left in direction to G.

Fig. 16 Second Phase of the Traffic Light Cycle at the Intersection

(3) In the third phase (see Fig. 17), the traffic light S3
changes to green and the traffic lights S1, S2, and S4 to
red, so that the vehicles on segment D can cross the
intersection in direction to F, or turn right toward G, or
turn left in direction to E.

Fig. 17 Third Phase of the Traffic Light Cycle at the Intersection

(4) Finally, in the fourth phase (see Fig. 18), the traffic light
S4 changes to green and the traffic lights S1, S2, and S3
to red, so that the vehicles of segment C can cross the
intersection in direction to E, or turn right toward F, or
turn left in direction to H.

Additionally, we placed the RSU in the center of the
intersection (see Fig. 14). It is worth mentioning that in any of
the phases described above (see Figs. 15, 16, 17, and 18), in
those segments where the traffic lights change to red (segments
B, C, and D in the first phase; segments A, C, and D in the

E

B

A

C

D F

G

H

RSU

S1
S2

S3 S4

E

B

A

C

D F

G

H

RSU

S1
S2

S3 S4

E

B

A

C

D F

G

H

RSU

S1
S2

S3 S4

E

B

A

C

D F

G

H

RSU

S1
S2

S3 S4

second phase; segments A, B, and C in the third phase;
segments A, B, and D in the fourth phase), the vehicles will
stop and, consequently, vehicle queues will be formed and
gradually increased in size with the arrival of more vehicles.
Now, our algorithm can count vehicles in several directions in
parallel. For that, the field Message Direction (see Fig. 1) must
be set in the COUNT_REQUEST messages. In these
experiments, we counted the number of vehicles in segments
B, C, and D, respectively, at the same time, during the first
phase of the traffic light cycle. For that, the RSU sends three
successive COUNT_REQUEST messages. The first one is sent
toward the end of segment B (with a Message Direction field
set to EAST), the second one is sent toward the end of segment
C (with a Message Direction field set to SOUTH), and the
third one is sent toward the end of segment D (with a Message
Direction field set to WEST). At the beginning of the
simulations, the vehicles are distributed in the different lanes
of the roads that form the intersection with a total number of
units varying from 50 to 500. The RSU starts the counting
process with Hop Limit=3

Fig. 18 Fourth Phase of the Traffic Light Cycle at the Intersection

In Tables 5, 6, and 7, we reported results relevant for
experiments of the proposed algorithm associated with the
number of units counted, the response time, and the total
number of control messages sent by the units during the
counting, respectively, in scenarios where we varied the
number of vehicles (50, 100, 150, 200, 250, 300, 350, 400,
450, and 500) randomly distributed in the three segments (B,
C, and D). Additionally, we varied their propagation range:
200m, 300m, and 400m. As already stated, the simulations
were done for the first phase of the traffic light cycle (Fig. 15),
that is, when the traffic lights S2 (segment B), S3, (segment D),
and S4 (segment C) are red, and the traffic light S1 (segment A)
is green. Since the vehicles of segments B, C, and D will stop
and wait for the green light, queues will be created in these
segments, and increase in size as the time passes with the
arrival of new vehicles, while vehicles in segment A will
continue their way to segments F, G, or H (see Fig. 19). The

results shown in columns B, C, and D of Table 5 are the
number of vehicles that should be counted/the number of
vehicles actually counted by our algorithm. Table 6 represents
the response time in milliseconds (ms), while Table 7 reports
the total number of control messages sent by the units during
the counting. We can observe from the results of our
experiments that our algorithm effectively performs the
counting of vehicles in segments B, C, and D, with an adequate
response time (see Table 6), and with a low number of control
messages sent by the units (see Table 7). These counting
results can be used to select the next light phase of the traffic
lights at the intersection.

For example, for a total number of vehicles equal to 450
(which were distributed in segments B, C, and D with 144,
142, and 164 vehicles, respectively), and a propagation range
equal to 300m, we can see that our algorithm made a counting
with a high degree of accuracy in each of the segments (B, C,
and D). That is, in segment B, C, and D, the RSU should count
144, 142, and 164 vehicles, respectively, and our algorithm
reported 144 (an exact counting), 142 (an exact counting), and
163 (with a margin of error of 0.6%), respectively. According
to Table 6, the response times were 9.07ms (segment B),
9.02ms (segment C), and 11.96ms (segment D), and a total
number of control messages sent by the vehicles equal to 4, in
each of these segments (see Table 7).

It is important to mention that in real vehicular contexts, in
fact, vehicle counting can be very helpful during critical
periods of flow at an intersection, to make a wiser decision
about the light change [34]. Currently, vehicles have to wait a
fixed amount of time to get a green signal, even if the other
roads at the intersection have no traffic or a light traffic load.
This situation can be avoided by programming the lights
according to the vehicular density. In other words, the green
light should be extended to a longer period for the road where
the vehicular density is higher.

Fig. 19 Example of a Scenario in a Four-way Intersection

E

B

A

C

D F

G

H

RSU

S1
S2

S3 S4

EA

B

C

D F

G

H

S1
S2

S3 S4

Table 5 Units Counted at an Intersection when Varying the Number of Units and Propagation Range

Total

Number

of Units

Propagation Range Values in Meters

200m 300m 400m

B C D B C D B C D

50 20/20 11/11 19/19 20/20 14/14 16/16 16/16 16/16 18/18

100 29/29 39/39 32/32 30/30 36/36 34/34 30/30 31/31 39/39

150 40/39 60/60 50/49 54/54 48/48 48/48 62/62 38/38 50/50

200 64/63 74/73 62/62 71/71 70/70 59/59 64/64 66/66 70/70

250 87/86 84/82 79/78 91/91 88/87 71/71 77/77 97/97 76/76

300 91/89 99/97 110/108 110/110 103/103 87/86 94/94 110/108 96/96

350 117/116 125/123 108/107 117/117 137/137 95/95 117/116 113/113 120/120

400 142/140 127/127 131/130 137/136 137/137 126/126 154/154 131/131 115/115

450 160/158 144/142 146/145 144/144 142/142 164/163 141/141 142/142 167/166

500 177/175 158/157 165/163 164/163 178/177 158/157 163/163 157/157 180/179

Table 6 Response Time during the Counting at an Intersection when Varying the Number of Units and Propagation Range

Total

Number

of Units

Propagation Range Values in Meters

200m 300m 400m

B C D B C D B C D

50 3.99ms 3.59ms 3.83ms 3.97ms 3.99ms 4.01ms 3.96ms 3.95ms 3.99ms

100 4.30ms 4.85ms 4.43ms 4.54ms 4.67ms 4.60ms 4.10ms 4.35ms 4.64ms

150 5.12ms 5.80ms 5.23ms 4.33ms 4.25ms 4.23ms 5.68ms 5.27ms 5.52ms

200 10.74ms 10.97ms 7.51ms 7.52ms 13.76ms 7.18ms 5.38ms 5.75ms 5.84ms

250 11.95ms 11.72ms 8.51ms 13.98ms 13.49ms 4.60ms 5.47ms 9.15ms 5.35ms

300 10.78ms 11.50ms 13.49ms 11.35ms 10.26ms 9.05ms 7.25ms 10.32ms 8.58ms

350 16.69ms 16.88ms 12.27ms 7.67ms 7.43ms 6.81ms 5.45ms 8.99ms 9.23ms

400 20.15ms 19.22ms 19.54ms 8.06ms 13.69/0ms 8.19ms 9.45ms 8.99ms 6.23ms

450 22.45ms 22.38ms 21.93ms 9.07ms 9.02ms 11.96ms 9.05ms 9.08ms 10.21ms

500 16.95ms 16.48ms 16.56ms 9.58ms 17.18ms 13.64ms 12.64ms 12.28ms 12.74ms

Table 7 Total Number of Control Messages Sent by the Units during the Counting at an Intersection when Varying the Number of Units and

Propagation Range

Total

Number

of Units

Propagation Range Values in Meters

200m 300m 400m

B C D B C D B C D

50 2 2 2 2 2 2 2 2 2

100 2 2 2 2 2 2 2 2 2

150 2 2 2 2 2 2 2 2 2

200 4 4 3 2 5 2 2 2 2

250 4 4 3 4 4 2 2 3 2

300 4 4 5 4 4 4 3 4 3

350 6 6 4 4 4 2 2 3 4

400 6 6 6 4 5 4 3 3 2

450 6 6 6 4 4 4 4 4 4

500 6 6 6 4 6 5 5 5 5

5.5 Scenarios with Different Penetration Rates

In this section, we study the influence of the penetration rate
over the algorithm. To this end, we use the same scenario as
the one of Section 5.1 (one-way road of a single lane).

Table 8 shows the counting error as a percentage when we
varied the number of vehicles (25, 50, 75, 100, 125, 150, and
175) and the penetration rate (100%, 95%, 90%, 85%, and

80%), with a propagation range of 300m. The simulations
seem to indicate that the counting error is proportionally
affected by the decrease of the penetration rate, i.e., for a
penetration rate of 80%, the counting error fluctuates around
20% (which is 100%-80%). These results are encouraging,
since the algorithm still makes an effective counting of the
units that do have an RSU, even in the presence of not

VANET-based vehicles. It is worth to mention that there is no
way to count a vehicle that does not have an RSU when we
limit the system to the WAVE and GPS technologies.
Aggregating some other information from other sensors of the
vehicles or from a few “in-situ” sensors on the roadside might
reduce the error counting, but this possible research is outside
the scope of this paper.

Table 8 Counting Error in Percent when Varying the Number of Units and

Penetration Rate (Road with One Lane)

Total

Number

of Units

Penetration Rates

100% 95% 90% 85% 80%

25 0.0 4.9 10.0 15.1 19.8

50 0.0 5.0 9.7 14.8 20.1

75 0.2 5.2 10.3 15.2 20.0

100 0.5 4.7 9.2 15.3 20.2

125 1.1 5.5 9.1 14.3 19.1

150 1.7 6.1 11.8 16.9 21.0

175 1.8 6.9 12.3 17.2 22.3

6 Conclusions and Future Work

The major contribution that we have achieved in this paper is
the design and implementation of an efficient novel algorithm
to count vehicles that are stopped at a traffic light, by using
VANET technology. This algorithm can be used as a basic tool
in the development of Adaptive Traffic Control Systems
(ATCSs), and should dramatically help to optimize vehicular
flow.

The proposed algorithm was simulated in different
scenarios using SUMO and OMNeT++ as simulators, and
Veins as a framework to bi-directionally couple the simulators.
To evaluate its performance, we conducted two different sets
of experiments. In the first set of experiments, we evaluated the
performance of our algorithm in scenarios where we varied the
total number of units and their respective propagation range in
one-way roads of one, two, and three lanes. In the second set of
experiments, we evaluated the behavior of the algorithm in a
four-way intersection, with several lanes.

The simulations that we performed show that our algorithm
efficiently calculates a total number of vehicles, with very low
response times and small numbers of control messages
(COUNT_REQUEST and COUNT_REPLY) sent by the units
during the counting.

As possible future work, we plan to enhance our algorithm
by dividing roads into “segments” or “regions of counting” of
fixed or variable size, where a segment leader will be
designated and be in charge of counting the vehicles in its
respective segment, with the purpose of minimizing the
response time. We also intend to implement our algorithm
under a radio propagation model with random behavior and
variations in the link qualities from one transmission to the
next, in order to study and analyze its influence on the results.
In the same direction, we project to study the impact of a 10- to
15-meter error over the positions reported by GPSs, in the
algorithms. Finally, we are also interested in the development
of a complete procedure for more intelligent signal timing

strategies to improve traffic capacity at intersections [35],
based on the counting algorithm presented in this paper.

Acknowledgments

We thank the CDCH-UCV (Consejo de Desarrollo Científico y
Humanístico) which partially supported this research under
grant number: PG 03-8066-2011/1.

References

[1] E. Gamess and I. Mahgoub. A Novel VANET-Based Approach

to Determine the Position of the Last Vehicle Waiting at a

Traffic Light. In Proceedings of the 2011 International

Conference on Wireless Networks (ICWN’11), Las Vegas,

Nevada, USA, 2011, pp. 327-333.

[2] S. Najafzadeh, N. Ithnin, S. Abd Razak, and R. Karimi.

Dynamic Broadcasting in Vehicular Ad hoc Networks.

International Journal of Computer Theory and Engineering,

Vol. 5, No. 4, pp. 629-632, 2013.

[3] R. Soto. Redes Vehiculares AdHoc – VANET. Boletín CIIAS

(Centro de Integración para la Industria Automotriz y

Aeronáutica de Sonora, A.C.). No. 047, Abril 2009.

[4] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an

International Standard for Wireless Access in Vehicular

Environments,” in Proceedings of the 2008 IEEE 67th Vehicular

Technology Conference (VTC Spring 2008). Marina Bay,

Singapore, May 2008, pp. 2036–2040.

[5] Y. Li, “An Overview of the DSRC/WAVE Technology,” in

Quality, Reliability, Security and Robustness in Heterogeneous

Networks, Vol. 74 of Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications

Engineering, Springer Berlin Heidelberg, 2012, pp. 544–558.

[6] R. Uzcategui and G. Acosta-Marum, “WAVE: A Tutorial,”

IEEE Communications Magazine, Vol. 47, May 2009, pp. 126–

133.

[7] S. Yi, Design and Construction of LAN based Car Traffic

Control System, World Academy of Science, Engineering and

Technology, Issue 46, pp. 612-615, October 2008.

[8] S. Dornbush and A. Joshi, StreetSmart Traffic: Discovering and

Disseminating Automobile Congestion using VANETs. In

Proceedings of the 2007 IEEE 65th Vehicular Technology

Conference (VTC Spring 2007), Dublin, Ireland, April 2007.

[9] A. Ghazy and T. Ozkul, Design and Simulation of an Artificially

Intelligent VANET for Solving Traffic Congestion. In

Proceedings of the International Symposium on Mechatronics

and its Applications (ISMA'09), Sharjah, United Arab Emirates,

March 2009.

[10] F. Padron and I. Mahgoub, Traffic Congestion Detection Using

VANET. Florida Atlantic University, Tech. Rep. 2010.

[11] E. Kell and E. Mills, Traffic Detector Handbook. U.S.

Department of Transportation, Federal Highway Administration,

2nd Edition, pp. 1-39. USA, 1990.

[12] L. Klein, Sensors Technologies and Data Requirements for ITS

Applications, Artech House Publishers, Norwood, USA, June

2001.

[13] L. Mimbela and L. Klein, A Summary of Vehicle Detection and

Surveillance Technologies Used in Intelligent Transportation

Systems. Handbook, Federal Highway Administration,

Intelligent Transportation Systems, USA, 2007.

[14] S. Grafling, P. Mahonen, and J. Riihijarvi, Performance

Evaluation of IEEE 1609 WAVE and IEEE 802.11p for

Vehicular Communications. In Proceedings of the 2010 Second

International Conference on Ubiquitous and Future Networks

(ICUFN 2010), pp. 344–348, Jeju Island, Korea, June 2010.

[15] G. Leduc, Road Traffic Data: Collection Methods and

Applications. European Commission, Joint Research Center,

Institute for Prospective Technological Studies, Seville, Spain,

2008.

[16] N. Chintalacheruvu and V. Muthukumar, Video Based Vehicle

Detection and Its Application in Intelligent Transportation

Systems, Journal of Transportation Technologies, Vol. 2, No. 4,

pp. 305-314, September 2012.

[17] C. Harris and M. Stephens, A Combined Corner and Edge

Detector. In Proceedings of the 4th Alvey Vision Conference

(AVC’88), Manchester, United Kingdom, September 1988.

[18] M. Lei, D. Lefloch, P. Gouton, and K. Mfadani, A Video-Based

Real-Time Vehicle Counting System using Adaptive

Background Method. In Proceedings of the 4th IEEE

International Conference on Signal Image Technology and

Internet Based Systems, Bali, Indonesia, November 2008.

[19] M. Tursun and G. Amrulla, A Video Based Real-Time Vehicle

Counting System using Optimized Virtual Loop Method. In

Proceedings of the 2013 International Workshop on Systems,

Signal Processing and their Applications (WoSSPA), Algiers,

Algeria, May 2013.

[20] K. Peiris and D. Sonnadara, Extracting Traffic Parameters at

Intersections through Computer Vision. In Proceedings of the

Technical Sessions, Vol. 27, pp. 68–75, 2011.

[21] A. Knaian, “A Wireless Sensor Network for Smart Roadbeds

and Intelligent Transportation Systems,” Master Thesis,

Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge,

Massachusetts, USA, June 2000.

[22] M. Litzenberger, B. Kohn, G. Gritsch, N. Donath, C. Posch,

N.A. Belbachir, and H. Garn, Vehicle Counting with an

Embedded Traffic Data System using an Optical Transient

Sensor. In Proceedings of the 10th International IEEE

Conference on Intelligent Transportation Systems (ITSC’07),

Seattle, Washington, USA. September 2007.

[23] M. Contreras and E. Gamess. A Multi-Interface Multi-Channel

Algorithm to Count Nodes Using Wireless Technology.

American Journal of Networks and Communications, Vol. 6,

No. 1, pp. 1-19, February 2017.
[24] Q. Luo, S. Wei, H. Cheng, and M. Ren, A Cooperative

Framework for Region Crowdedness Sensing in VANETs, In
Proceedings of the 2017 IEEE/CIC International Conference on
Communications in China (ICCC 2017), Qingdao, China,
October 2017.

[25] IEEE 1609 – Family of Standards for Wireless Access in

Vehicular Environments (WAVE), U.S. Department of

Transportation, January 2006.

[26] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global

Positioning System: Theory and Practice, 5th Edition, Springer,

September 2004.

[27] F. Martinez, C. Toh, J. Cano, C. Calafate, and P. Manzoni, A

Survey and Comparative Study of Simulators for Vehicular Ad

Hoc Networks (VANETs), Wireless Communications and

Mobile Computing, Vol. 11, No. 7, pp. 813–828. July 2011.

[28] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, SUMO

- Simulation of Urban MObility: An Overview. In Proceedings

of the Third International Conference on Advances in System

Simulation (SIMUL 2011), Barcelona, Spain, October 2011.

[29] A. Varga and R. Hornig, An Overview of the OMNeT++

Simulation Environment. In Proceedings of the First

International Conference on Simulation Tools and Techniques

for Communications, Networks and Systems (SIMUTools 2008),

Marseille, France, March 2008.

[30] E. Gamess and M. Contreras, “A Proposal for an Algorithm to

Count Nodes using Wireless Technologies”. International

Journal of High Performance Computing and Networking, Vol.

8, No. 4, 2015, pp. 345-357.

[31] C. Sommer, R. German, and F. Dressler, Bidirectionally

Coupled Network and Road Traffic Simulation for Improved

IVC Analysis, IEEE Transactions on Mobile Computing, Vol.

10, No. 1, pp. 3–15. January 2011.

[32] A. Wegener, M. Pi Orkowski, M. Raya, H. Hellbruck, S.

Fischer, and J.-P. Hubaux, TraCI: An Interface for Coupling

Road Traffic and Network Simulators. In Proceedings of the

11th Communications and Networking Simulation Symposium

(CNS 2008), Ottawa, ON, Canada, April 2008.

[33] K. Wessel, M. Swigulski, A. Kopke, and D. Willkomm, MiXiM:

The Physical Layer An Architecture Overview. In Proceedings

of the 2nd International Conference on Simulation Tools and

Techniques (SIMUTools 2009), Rome, Italy. March 2009.

[34] W. S. Homburger, J. W. Hall, R. C. Loutzenheiser, and W. R.

Reilly, Volume Studies and Characteristics. In Fundamentals of

Traffic Engineering. UC Berkeley Institute of Transportation

Studies, University of California at Berkeley, pp. 5.1–5.6. 1996.

[35] X. Huang, Q. Zhang, and Y. Wang, Research on Multi-agent

Traffic Signal Control System based on VANET Information, in

Proceedings of the 2017 IEEE 20th International Conference on

Intelligent Transportation Systems (ITSC 2017), Yokohama,

Japan, October 2017.

	An Algorithm based on VANET Technology to Count Vehicles Stopped at a Traffic Light
	Recommended Citation

	tmp.1649957680.pdf.fi3ip

