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Abstract 

The southeastern United States is a critical biodiversity hotspot once covered in prairie 

grassland ecosystems and now facing significant threats due to urbanization, habitat destruction, 

over-exploitation, biological invasions, pollution, and climate change. This study analyzes the 

response of Alabama’s native prairie ecosystem to climate change. We used open top chambers 

(OTCs) to simulate climate change-induced warming. We assessed the response of ecosystem 

function and structure to higher temperatures (1-3oC). The indicators of ecosystem function 

included phenology, leaf surface area (LSA), specific leaf area (SLA), and aboveground and 

below net primary productivity (ANPP and BNPP respectively). Ecosystem structure was 

evaluated based on species diversity and composition. Our results showed ecosystem function in 

the OTC was significantly lower based on LSA, SLA, and leaf biomass. Although not 

statistically significant, ANPP and BNPP were also higher in control plots. We documented 

altered phenology in several species including early flowering and increase in the length of the 

growing season. We also documented decreased species diversity in the OTCs and the inability 

of some species to establish under the warmer conditions. Our results exemplify the negative 

effects of climate change on native prairie vegetation. Reduced ecosystem function has 

cascading impacts and will threaten food resources for other species, especially at higher trophic 

levels, thus putting at risk our already vulnerable prairie ecosystems. Moreover, a decline in 

healthy plants in an ecosystem will also alter ecosystem services like carbon sequestration, soil 

stabilization, and water cycle regulation. Changes in ecosystem services and biodiversity will 

also directly affect our food security.  
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Introduction 

Biodiversity and Threats of the Southeastern Grasslands 

The southeastern United States is an area of high biodiversity, and is part of one of the 36 

Global Biodiversity Hotspots, namely the North American Coastal Plain (NACP) (Noss et al., 

2015). Alabama is a key state in the NACP and is considered one of the most biodiverse states in 

the country (Stein, 2002). The project is focused on Alabama’s little-known and often 

misunderstood grasslands. Grasslands existed in much of southeastern United States in a pre-

Euro-American landscape although these areas can hardly be recognized as grasslands today due 

to the thick trees and excessive groundcover essentially turning these areas to forests (Noss, 

2013). In addition to urbanization and its associated changes, climate change is a major threat to 

Alabama’s native prairie ecosystems.  

The loss of the southeastern grasslands continues to threaten a concerning number of 

species, making up nearly one-third of species listed on the Endangered Species Act (Noss et al., 

2021). The Southern Appalachians and Ridge and Valley Province, including central Alabama, 

are considered the hottest spots of endemism in the Southern United States, and among the 

hottest in the world for both plant and animal species (Noss, 2013), underlining the significance 

of conserving these species. Grassland ecosystems provide countless provisioning, cultural, 

supporting, and regulating services (Petermann, 2021). These include important processes like 

climate regulation through the sequestration of soil carbon, providing habitats for numerous 

native pollinators, and even simple services like providing aesthetic value, all of which justify 

the conservation of these grasslands as crucial to the well-being of the environment and society 

(Petermann, 2021).  
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Climate Change and the Southeastern Region  

Climate scientists agree that temperatures in the Southeastern United States have 

increased since the industrial era, by about 1.1°C since 1970, and continue to remain in a distinct 

warmer climate than previously seen, with temperatures projected to increase 2.2 to 4.4°C by the 

end of the century (Belesky & Malinowski, 2016). Biodiversity across the globe is responding to 

climate change in three primary ways: change in phenology, a shift in range distribution, and 

extinctions. Phenology refers to the timing of plant life-cycle events, such as leaf bud bursting, 

flowering, and fruiting. The timing of these events, known as phenophases, are largely triggered 

by temperature (Ingty et al. 2023, Hart et al. 2014, Miller Rushing and Primack 2008). Studies 

have shown that spring phenology has advanced significantly along with delayed fall phenology 

across the world (Piao et al. 2019). Temperatures have been shown to speed up plant 

development, causing early anthesis and potentially leading to missed opportunities for 

pollination (Badeck et al., 2004). Plant species are also moving to higher, cooler elevations or 

higher latitudes due to climate change (Pecl et al., 2017). In some cases, moving to higher 

elevations can lead to plant success in a new location, but more often, plants can essentially trap 

themselves in unsuitable conditions leading to their extinction (Pecl et al., 2017). These changes 

in phenology will negatively impact pollination, pollinators, biodiversity, productivity, and even 

food security (Memmot et al., 2007; Klein et al., 2007, Cardinale et al., 2012, Bellard et al.,2012, 

Leadley et al., 2010, Lobell et al., 2011; Myers et al., 2014). 

The response of vegetation to climate change has been studied using numerous methods 

ranging from long term recordings including historical records kept by scientists, amateur 

naturalists, and herbaria records (Hart et al. 2014, Miller-Rushing and Primack 2008, Primack et 

al. 2004), remotely sensed imagery (Ingty et al 2023), and temperature or carbon dioxide 
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manipulation experiments (Hollister and Webber 2000, Dorji et al. 2020, Wolkovich et al. 2012). 

Passive warming experiments (temperature manipulation) have been used to simulate climate 

change and its impacts on plant traits that define the structure and function of an ecosystem 

(Dorji et al 2020, Kudo 2016). This approach has been especially revealing to study the response 

of plant traits such as phenology, plant growth and vegetation cover (Hollister and Webber 2000, 

Dorji et al 2020, Willis et al 2010, Kudo 2016).  

Passive Warming Experiments Using Open Top Chambers (OTCs) 

Passive warming using open top chambers (OTC) has been shown to be an effective way 

to simulate climate change and measure the effects on vegetation (Hollister and Webber 2000, 

Suzuki and Kudo 1999, Kudo 2016). The OTC is a passive warming device, that is based on the 

experimental apparatus designed by the International Tundra Experiment (ITEX) (Hollister et al., 

2023). The OTC warms ambient air temperatures by about 1-3°C which falls within the range of 

predictions from global climate models (Intergovernmental Panel on Climate Change, 2023). 

Studies simulating climate change via OTCs have recorded changes in productivity, diversity, 

growth rates and altered phenology (Cowles et al 2018, Hollister and Webber 2000).  

OTCs were used in this project to understand the response of southeastern grasslands to 

simulated climate change induced warming at an ecosystem-level. This is especially significant 

since this is the first time passive warming experiments have been used to study grasslands 

communities of the Southeast. We used a multispecies/ecosystem-level approach that has proven 

to be most successful when looking at conservation policy (Noss et al., 2021).  

We used our project site to test two questions regarding the response of native prairie 

grassland ecosystems to climate change. 
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1) What is the response of prairie ecosystem function to simulated climate change induced 

warming?  

We used phenology, leaf surface area, biomass, specific leaf surface (a function of leaf 

surface area and leaf biomass), aboveground net primary productivity, and belowground net 

primary productivity as indicators of ecosystem function. 

Our hypotheses and expected results for ecosystem function are as follows: 

Alternative Hypothesis: Warmer conditions because of climate change will reduce ecosystem 

function and alter plant phenology.  

Prediction: Vegetation in the OTC will show significantly lower values of NPP and SLA than the 

control group. Spring phenology will advance in the OTCs.  

2) What is the response of prairie ecosystem structure to simulated climate change induced 

warming?  

We used vegetation species richness and composition as an indicator of ecosystem 

structure.  

Our hypotheses and expected results for ecosystem function are as follows: 

Alternative Hypothesis: Climate change induced warming will reduce plant community structure. 

Prediction: Vegetation in the OTC will show less species diversity (richness and evenness than 

the control group.  

Community outreach was also an important aspect of this project. The project site is 

visible from the road, and through signs, social media, and word of mouth, we were able to foster 

some community participation. Our experimental plots were and will continue to be used for 

Course-based Undergraduate Research Experience (CURE) labs at JSU at the Introductory 

Biology level and the 300-level courses (Ecology). We have also received interest from other 
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educational institutions (particularly Oxford High School) who are using the CURE labs as a 

model for their dual enrollment courses. 

In the long run, we foresee this project site expanding and even serving as a model for 

other institutions and communities to replicate and foster conservation of native prairie 

grasslands and encourage awareness and healthy discourses on the perils of climate change and 

our native prairies. 

Methods 

Study Site 

Our project site was at Jacksonville State University in Jacksonville, Alabama 

(approximately located at 33.82359, -85.76115). Two plots of 15 X 5 feet each were prepared for 

our research. Each plot was first tilled in April of 2023 and covered with tarpaulin for a month to 

clear out any vegetation present. Thirteen native southeastern prairie species were then planted 

on June 16, 2023 (table 1).  These species were chosen because they represent the major 

biodiversity of southeastern prairies. 

Table 1. List of native prairie species planted in plots. 

Family   Scientific Name  Common Name  

Asclepiadaceae (Milkweed)  Asclepias verticillata L. Whorled Milkweed  

Asteraceae (Aster)  Anaphalis margaritacea 

(L.) Benth. & Hook.f.  

Pearly Everlasting  

Asteraceae (Aster)  Coreopsis palmata Nutt. Prairie Coreopsis  

Asteraceae (Aster)  Rudbeckia hirta L. Black-Eyed Susan  

Asteraceae (Aster)  Symphyotrichum 

oblongifolium (Nutt.) 

G.L.Nesom 

Aromatic Aster  

Fabaceae (Legume)  Baptisia tinctoria (L.) R.Br. Small Yellow Wild Indigo  

Fabaceae (Legume)  Dalea purpurea Vent. Purple Prairie Clover  

Lamiaceae (Mint)  Monarda punctata L. Spotted Bee Balm  

Poaceae (Grass)  Panicum virgatum L.  Switch Grass  
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Poaceae (Grass)  Schizachyrium scoparium 

(Michx.) Nash  

Little Bluestem  

Scrophulariaceae (Figwort)  Agalinis tenuifolia 

(Vahl)Raf.  

Slender False Foxglove   

Verbenaceae (Verbena)  Verbena stricta Vent. Hoary Vervain  

Violaceae (Violet)  Viola sororia f. priceana 

House 

Common Blue Violet, Bi-Color 

 

Open Top Chambers  

Four clear plexiglass sheets each 0.093 inches thick were used with sides cut at an angle 

of 65° (Fig 1) to construct one OTC. We constructed four OTCs in total. The sides were secured 

together using Gorilla Glue and reinforced with zip ties at each corner. On June 26th, 2023, we 

placed two OTCs in each plot for a total of four OTCs. Parts of the plot outside the OTC were 

sampled as the control. Each OTC had a height of 28cm covering 0.66m2 of ground area. The 

top opening of OTC was 0.026 m2.  

Ambient air temperature was measured inside OTC and control. Measurements were 

taken at 1-hour intervals during the experimental period by automatic recording thermometers 

(HOBO Pendant MX Data Logger).  

 
Figure 1: Model of OTC with dimensions in details 
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Figure 2: Model of a plot of the study site. On our site, we had this setup duplicated for a total of 4 

treatment areas and 2 control areas.  

Ecosystem Structure  

Plant species diversity was documented at monthly intervals from October 2023 to April 

2024 to determine ecosystem structure inside OTC and control. Data was always collected by the 

same individual to maintain consistency.  

Ecosystem Function  

Phenology, net primary productivity –both above and below ground (ANPP and BNPP 

respectively), leaf surface area (LSA), leaf biomass, and specific leaf area (SLA) were 

documented to measure change in ecosystem function. Additional data was collected by 

undergraduate students in the Introductory Biology (BY 104) labs for LSA and SLA and the 

Ecology (BY 332) course for net primary productivity. Only data that was cross checked by 

graduate teaching assistants were used in this study. 

Phenology:  

During the experimental period, phenology was recorded weekly by noting the species 

present inside and outside of the OTCs, particularly which phenophase the plant was presenting. 
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For the study, we identified and recorded two major phenophases: leafing and flowering. Data 

was recorded once a week from each plot for both OTC and control from August 2023 to June 

2024.  

Net Primary productivity: 

ANPP was collected at peak standing crop by clipping an area of 15 X 15 cm in the month 

of November. Each sample was then oven dried at 60oC for 48 hours and the dry weight was 

measured using a precision scale.  

BNPP was collected by using a soil core to dig below the vegetation and collect six 

inches deep of soil. Different-sized sifters were used to separate dirt, twigs, rocks, and other 

debris from the roots in our below-ground samples. Once isolated, the roots were oven dried at 

60oC for 48 hours and the dry weight was measured using a precision scale. The dry weight for 

ANPP and BNPP were standardized to per unit area (cm2) area by dividing by their respective 

sampling area- 225 cm2 for ANPP and 3.14cm2 for BNPP. 

Leaf Surface Area:   

Leaves were collected at petiole length from both OTC and control. After collecting, 

leaves were placed on graph paper and photographed from straight above. Photographs were 

uploaded into ImageJ software to accurately measure leaf surface area for all leaves.  

Specific Leaf Area: 

Specific leaf area is a function of leaf surface area and biomass. Leaf surface area was 

collected and calculated as detailed above. Leaf biomass was calculated by drying the leaves at 

60°C for 48 hours and the dry weight was measured on a precision scale. SLA was calculated by 

using the formula below.  
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Statistical Analysis  

Statistical analysis and graphical representation were conducted using vegan and ggplot2 

packages in R-Studio. Normality of the data was checked using the Shapiro Wilks test. When the 

data was normally distributed the parametric Students T test was used to test for significance 

(p<0.05) of differences and the Wilcox Rank Sum test was used for non-parametric data. To 

explore the response of species composition to warming a triangular similarity matrix was 

constructed using Bray Curtis similarity coefficients based on cover data. The similarity matrix 

was displayed in an ordination plot using non-metric multidimensional scaling (NMDS). The 

stress function was used to assess how well the calculated sample relationships are represented in 

the two-dimensional plot. A lower value (<0.2 commonly accepted) represents a more accurate 

ordination.  

The Analysis of similarity (ANOSIM) was used to check the degree of dissimilarity of 

species across treatments. ANOSIM based on the Bray Curtis similarity matrix was used to 

check significance levels using a permutation test with 999 simulations. R values close to 1 

suggest sites within a group are similar to each other and dissimilar to sites in other groups. 

While an R value close to 0 suggests an even distribution of high and low ranks within and 

between groups. 
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Results 

Open Top Chamber: 

Temperature data was collected over 130 days (10/27/2023 to 3/6/2024) in both OTC and control. The 

mean daily temperature in OTC was 10.06°C and control was 9.35°C. The mean temperature inside the 

OTC was 0.71°C higher than temperatures recorded in the control plots (Fig 2).  

 

Figure 3: Daily average temperature recordings in OTC and control. Data recorded by HOBO 

Pendant MX Data Logger daily over the course of the experiment.  

 

Ecosystem Function: 

Leaf Surface Area 

250 leaves were sampled (125 from OTC and 125 from control). The mean LSA for the 

OTC leaves was 569.25cm2 and mean LSA for control was 796.26cm2. Leaves in the control 

plots had significantly (p<0.05) higher surface area than leaves in the OTC with the mean LSA 

in the control being 39.6% higher (Fig 3, table 2).  Normality of data was checked using the 
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Shapiro Wilk’s Test and consequently significance of difference was tested using the Wilcoxon 

signed-rank test.  

Specific Leaf Area 

We sampled 30 leaves to measure SLA, which included measuring both LSA and 

individual leaf biomass. The mean LSA for leaves in OTC was 886.96cm2 and 1406.41cm2 in 

the control. Control leaves were 58.6% higher than the OTC. The mean biomass was 35.01mg in 

OTC and 83.62mg in control. Control leaves were 138.8% higher than the OTC leaves. (Fig 3, 

table 2) 

We found that the SLA in the OTC plots were 99.85% higher than the control plots. The 

Wilcoxon test showed that the SLA in OTC was significantly higher than control with a P-value 

of 6.71e-08. (Fig 3, table 2) 

Aboveground and Belowground Net Primary Productivity 

Wilcoxon tests were run to compare OTC and control plot values for ANPP and BNPP. 

ANPP was found to be higher in the OTCs by 15.40%; where the mean value in the OTCs was 

20.31mg/cm2 and the mean value in the control was 17.60mg/cm2. This difference was not 

considered significant (p= 0.8287) (Fig 3). BNPP was higher in the control plots by 3.12%; with 

a mean dry weight of 273.72mg/cm2 and 282.30mg/cm2 in OTC and control respectively. Again, 

this difference was not considered significant with a P-value of 0.9025. (Fig 3) 

Net Primary Productivity was also compared between aboveground and belowground. 

The mean value of ANPP was 18.96mg/cm2 and the mean value of BNPP was 278.03mg/cm2. 

BNPP was significantly greater than ANPP with a P value of 3.824e-05. (Fig 3). 
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Figure 4: Boxplots of OTC vs Control for LSA, Biomass, SLA, ANPP, BNPP 
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Table 2: Ecosystem function traits under simulated climate change (OTC) treatments and in 

control plots. P values represent significance (p<0.05) of difference using the Wilcoxon signed 

rank non-parametric test 

PLOT 
LSA (mm2) 

Leaf Biomass 

(mg) 
SLA (mg/mm2) ANPP (mg) BNPP   (mg) 

All (mean) 

     

696.26 59.31 19.91 18.96   278.03 

OTC (mean) 
569.26 35.01 26.54 20.31    273.76 

Control (mean) 
796.26 83.62 13.28 17.60 282.30 

Difference 

(Control- OTC) 

227.01 48.61 -13.26 -2.71 8.54 

P-value                    

(two tailed) 

0.03 0.006 1.34E-07 0.83 0.90 

P-value               

(one tailed) 

0.02 0.003 6.71E-08 0.32 0.47 

 

Phenology 

In summer 2024 we noted two species flowering in the plot namely Rudbeckia hirta (Black Eyed 

Susan) and Monarda punctata (Spotted Beebalm) (Fig 4,5,6). We noted early flowering of Rudbeckia 

hirta in the OTC when compared to the control plots. The first flowering individuals of Rudbeckia hirta 

in the OTC were documented 35 days before the same species flowered in the control (Fig 6). Monarda 

punctata flowered only on the control and not in the OTC (Fig 6).  

2023 phenology data was limited since this was the first year that the plots were 

established.  Nevertheless, several species were documented flowering in the control plots that 

did not flower or grow in the OTCs; these included-, Euphorbia maculata (Spotted Spurge), 
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Senna tora, Cyperaceace sp., and Asclepias verticillata. Notably, Rudbeckia hirta showed 

delayed flowering in the fall in the OTC than the control (October 16 versus August 18).  

Leafing phenophase showed similar results with several species absent in the OTC that 

were found in the control. This included Chamaesyce maculata, Senna tora, and Dalea 

purpurea. 

           

Fig 5: Left: Monarda punctata (Spotted Beebalm) flowering outside the passive heating 

chambers (OTC). No individuals of the species were found in the OTC.  

Fig 6: Right: Rudbeckia hirta (Black Eyed Susan) flowering in the OTC and control plots.  
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Figure 7: Flowering phenology of 6 species over a one-year period in both OTC and control 

(Fall 2023 to Summer 2024).  

Ecosystem Structure:  

Species Richness and composition 

24 species were sampled in the 8 plots between April 2023 and April 2024. This included 

19 species in the control plots 18 species in the OTC. 13 species were found in both OTC and 

control, 5 exclusively in the OTC and 6 in control only. The species richness was significantly 

higher in the control than the OTC (table 3). Although not significant the control plots showed 

higher diversity (both Shannon and Simpsons) than the OTC. The mean Shannon index was 1.67 

and 1.85 in the OTC and control respectively (Fig 7, table 3). The mean Simpsons diversity 
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index was 0.77 in the OTC and 0.8 in the control (Fig 7, table 3). Beta diversity a measure of 

species turn over in each quadrat was higher in OTC than control plots. Higher beta diversity 

suggests a more heterogenous species composition from one quadrat to the next. 

The results of an ANOSIM (Analysis of similarity) did not show a significant difference 

(p=0.6) in species composition in the OTC and control plots (Fig 7). 

Table 3: Diversity indices of plant species found in the OTC and control plots. 

** represent statistically significant (p<0.05) differences.  

DIVERSITY INDEX OTC CONTROL 
Difference 
(Control-OTC) 

Mean species richness 7.75 11.5 3.75** 
Mean Shannon index 1.67 1.85 0.18 
Mean Simpson diversity 
index 0.77 0.81 0.04 
Beta diversity 1.32 0.67 -0.65 
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Fig 8: Boxplots representing diversity indices in OTC and control plots. 
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Figure 9: Results of a non-metric Multidimensional scaling (NMDS) multivariate analysis. The 

similarity matrix was displayed in an ordination plot using the Bray Curtis index. 

Discussion 

Phenology 

In our study we had limited phenology data, but our results suggest three important 

findings. First, some species flowered earlier in response to simulated climate change driven 

warming in the OTCs. Second, some species failed to establish in the OTCs, suggesting an 

inability to thrive in the warmer climate. Third, as shown by early spring and delayed fall 

flowering of Rudbeckia hirta in the OTCs plant species showed early spring and delayed fall 

phenology indicating an increase in the length of growing season. This clearly suggests that 

while some plants will benefit from warmer temperatures leading to longer growing seasons (like 

Rudbeckia hirta) numerous other plants will not be able to survive in elevated temperatures.  
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Our results are consistent with multiple studies that show early flowering in warmer 

temperatures (Beaubien & Hamann, 2011; Craufurd & Wheeler, 2009; Miller-Rushing & 

Primack, 2008). Historical records have already shown that common plant species and crops are 

developing faster and flowering earlier in the year than they have historically (Beaubien & 

Hamann, 2011; Craufurd & Wheeler, 2009; Miller-Rushing & Primack, 2008). Along with these 

historical records, researchers have worked to track phenology with ground observations, remote 

sensing, and analysis of atmospheric CO2 signal (Badeck et al., 2004; Ingty et al., 2023). Ground 

observations showed a correlation between warmer environments and the advancement of spring 

bud burst and flowering dates; Normalized Difference Vegetation Index (NDVI), a measure of 

vegetation phenology using remote sensing, also showed a trend for advanced green-up in spring 

(Badeck et al., 2004). Analysis of remotely sensed data in the Himalaya revealed that spring start 

of season was advanced by 21.3 days over a 17-year study period, while dates for maturity and 

senescence were all delayed; supporting the trend of advanced spring phenology and delayed fall 

phenology due to climate change (Ingty et al., 2023).  

Other studies have used OTCs to measure the changes in phenology associated with 

climate change.  In a study using OTCs on alpine shrubs in China, all species used showed 

earlier flowering and a longer flowering stage in the OTCs when compared with the control plots 

(Xu et al., 2009). The same results were found with tundra plants, noting a 3% longer growing 

season in passive warming when compared to control (Collins et al., 2021). Our results 

suggesting higher temperatures tend to lead to quicker development, early flowering, and a 

longer length of growing season are consistent with numerous other studies (Beaubien & 

Hamann, 2011; Craufurd & Wheeler, 2009; Miller-Rushing & Primack, 2008, Ingty et al., 2023). 
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Leaf Surface Area  

In this study, we found that leaf surface area reduced significantly in response to climate 

change driven simulated warming. Leaves experiencing higher temperatures in the OTC are 

adapting by reducing their surface area, resulting in less solar radiation being absorbed. Our 

results align with multiple studies that show reduced leaf surface area in higher temperatures 

(Milthorpe, 1959; Pilau & Angelocci, 2015). A study done on the leaves of cucumber plants 

showed that the leaf surface area remained a consistent size until temperatures reached 30°C and 

then significantly decreased in size (Milthorpe, 1959). Another study focused on orange trees 

showed the same results: as temperatures rose, leaf surface area reduced (Pilau & Angelocci, 

2015). These studies, along with our results, show a direct correlation between higher 

temperatures and reduced leaf surface area suggesting that eaves are shrinking their surface area 

in an adaptive measure to avoid excess solar radiation.  

 

Specific Leaf Area 

Our results support the idea that SLA (a function of LSA and leaf biomass) increases in 

the OTCs suggesting that leaves are adapting by becoming thinner in response to warmer 

temperatures. Thicker leaves will tend to absorb more solar radiation than thinner leaves. Leaves 

in the OTCs are thinning out to save energy and absorb less solar radiation. This is especially 

interesting since we found that LSA showed a significant decrease in the OTCs suggesting that 

leaf biomass too must compensate for this loss by decreasing by a significant amount, 

Our results align with multiple studies that show similar results. A study completed in 

2009 with alpine shrubs in China observed significant differences in SLA between three out of 

four species growing in the OTC when compared with the control vegetation; it was found that 

higher temperatures led to an increase in SLA (Xu et al., 2009). In another study in which OTCs 
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were used, there were significant differences observed in SLA between the OTC and control 

vegetation wherein OTC SLA was higher when compared to control vegetation; however, only 

one out of the two species used in this study showed significant results (Zhen-Feng et al., 2008).  

SLA was introduced as a concept to help analyze whole plant growth and is often used to 

understand the relative thickness in leaves (Gunn et al., 1999). Understanding the relationship 

between SLA and leaf thickness gives insights into plant adaptation strategies to changes in their 

environment and implications for leaf function. Leaves with high SLA tend to be thinner because 

they invest more resources into their photosynthetic tissues, which contributes to a larger surface 

area for gathering light and exchanging gases (Wright et al., 2004). On the contrary, lower SLA 

is associated with thicker leaves, caused by the leaves allocating more resources to the 

conservation of water which reduces the proportion of leaf mass devoted to photosynthetic 

tissues (Wright et al., 2004).  Using Open Top Chambers (OTCs) to simulate climate change on 

a small scale is one way that researchers have studied SLA and its response to temperature 

increases.  We would like to continue this study to further our understanding of the relationship 

between climate change and SLA. It would also be beneficial to see more studies on this topic 

specifically. 

 

Aboveground and Belowground Net Primary Productivity 

Our study reveals two important results regarding net primary productivity (NPP). First, 

that BNPP reduced in response to warming while ANPP increased in warmer temperatures. 

Second, we found that BNPP is significantly higher than ANPP both in the OTC and in the 

control plots. This clearly indicates that more energy is being allocated below ground, where the 

plants are forming their roots, and less energy is spent in above ground structures. It is important 
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to note that this project took place during the first year after planting. It is likely that the 

vegetation is using more energy to produce strong below ground structures and roots instead of 

vulnerable above ground structures, and the differences between ANPP and BNPP could shift in 

the future as the vegetation matures.  

ANPP and BNPP are both important in quantifying the amount of carbon stored in living 

organisms and understanding the role of the ecosystem in carbon sequestration (Gayathri et al., 

2021). Changes in both ANPP and BNPP are extremely sensitive to variables, including 

disturbance, anthropogenic impacts, topography, and climate. It is well established that elevated 

CO2 and warming can directly influence and alter ANPP and BNPP (Field et al., 1995; Garbutt 

et al., 1990; Kardol et al., 2010). Higher biomass often indicates greater productivity and nutrient 

cycling within an ecosystem (Gayathri et al., 2021; Parresol, 2002).  

Our results align with several studies done thus far analyzing ANPP that tend to support 

the idea that an increase in temperature will also increase ANPP (Wang et al., 2017; Poudel et 

al., 2011; Garbutt et al., 1990). Our study found that ANPP increased in the OTCs compared to 

the control plots, although this difference was not significant.  

Our results also align with studies analyzing BNPP. A study found that with a 2°C 

increase, BNPP is affected negatively (reduced by 41%) in grasslands (Li et al., 2018), while 

another study found that while BNPP was generally sensitive to climate change, though there 

was not a significant change of BNPP (Xu et al., 2016). Our study found that BNPP decreased 

with higher temperatures in the OTC; however, these results were not significant. We suggest 

that our study site continue to be used to study both ANPP and BNPP. More studies are needed 

to better understand the relationship between climate change and net primary productivity. 
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Ecosystem Structure:  

Species Richness and composition:  

This was the first year the plots were established so we did not expect to find any major 

results regarding diversity and composition. However, we did find some interesting preliminary 

indicators. The species richness was significantly higher in Control than OTC plots and although 

not statistically significant, all species diversity indices were higher in the control. This indicates 

the negative impacts of climate change driven warming trends on biodiversity. This is further 

exemplified by the absence of six species in the OTC found only in the control. This includes the 

purple prairie clover (Dalea purpurea), a species of immense ecological significance to prairie 

ecosystems. In addition to its nitrogen fixing properties Dalea purpurea is an important species 

for numerous native insect species including the charismatic Southern Dogface butterflies 

(Zerene cesonia) (Fenner et al., 2018).  

Lower beta diversity in the control suggests a more homogenous species composition 

from one quadrat to the next in the control plots. This indicates similar species being found in the 

different quadrats in the control plots. The higher beta diversity in the OTC indicate that species 

found in one quadrat in the OTC was different than the next. This may be because species are 

taking longer to establish themselves in the warmer conditions and it will be interesting to see 

how beta diversity changes over the next few years after the community stabilizes and most 

species establish themselves. The NMDS ordination plot and ANOSIM analysis did not show 

any clear results, this was primarily because of the low sample size, since we did not have many 

species in 2023 and winter of 2024 when the bulk of sampling effort was put. 
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Conclusion 

Our study revealed results that are consistent with multiple studies analyzing climate 

change and its effects on vegetation and biodiversity. When ambient temperatures are increased, 

we saw altered phenology, significantly reduced leaf surface area, significantly lower specific 

leaf area, and lower belowground net primary productivity. Each of these changes to vegetation 

can affect the overall health of plants and cause unexpected damage that affects the environment 

and even humans.  

It has been well established that climate change is affecting phenology and causing 

advanced flowering (Beaubien & Hamann, 2011; Craufurd & Wheeler, 2009; Miller-Rushing & 

Primack, 2008). Changes in phenology, particularly the timing of plant blooming, have 

significant impacts on humans, affecting biodiversity and food supply (Kjøhl, 2011). In a study 

done to simulate the effects of rising temperatures on a plant pollinator network, it was found 

that shifts in phenology reduced the resources for 17 to 50% of pollinator species (Memmot et 

al., 2007). A temporal mismatch can be detrimental for plants, pollinators, and consequently 

humans. These mismatches cause poor pollination that reduce crop yield thus affecting our food 

supply (Memmot et al., 2007; Klein et al., 2007).  Thirty five percent of global food production 

is dependent upon animal pollination; this includes fruit, vegetation, and seed production from 

eighty-seven of the world’s leading food crops (Klein et al., 2007). Altered plant phenology 

would result in less pollination events, less resources for pollinators and decreasing agricultural 

yield, threatening food security.   

It is already well known that climate change has negative effects on biodiversity 

(Cardinale et al., 2012, Bellard et al.,2012, Leadley et al., 2010). Bellard et al’s (2012) seminal 

study examined multiple models attempting to understand the future of biodiversity with rising 
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temperatures across the globe; while all modeling methods have weaknesses and can vary, they 

all found the same results: alarming consequences for biodiversity. Keeping a diverse 

community is important because these communities are more productive and functionally more 

efficient (Cardinale et al., 2012). 

Changes in primary productivity (biomass), specifically reduced biomass, can lead to 

habitat loss and food insecurity for animals in the surrounding ecosystem. Reduced primary 

productivity will threaten food resources for species, especially at higher trophic levels thus 

putting at risk our already vulnerable prairie ecosystems. Moreover, a decline in healthy plants in 

an ecosystem will also alter ecosystem services like carbon sequestration, soil stabilization, and 

water cycle regulation (Cardinale et al., 2012).  

Along with changes in ecosystem services and biodiversity, climate change will also 

directly affect our food security. Several studies show that increased CO2 and increased 

temperatures have negative effects on food nutrition and supply (Lobell et al., 2011; Myers et al., 

2014). Plants with lower leaf surface area and net primary productivity function less efficiently, 

producing a lower crop yield which can directly impact food supply (Lobell et al., 2011; Myers 

et al., 2014). Research models show that the global maize and wheat production declined by 

3.8% and 5.5% respectively when temperatures were increased (Lobell et al., 2011). Not only is 

the supply affected; the quality of our food will be reduced as well. Lower production efficiency 

will reduce the amount of nutrients in our food (Myers et al., 2014). Researchers found a direct 

decrease in concentrations of zinc and iron in C3 grains and legumes grown at the elevated CO2 

concentration that is predicted for the middle of this century, reflective of our changing climate 

(Myers et al., 2014).   
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Changes in climate can lead to decreases in biodiversity, reduced ecosystem services, and 

increased food insecurity. Understanding these changes at an ecosystem level- such as 

southeastern prairie grasses- is essential in learning how we can better address these concerns for 

future generations. 

Reflections 

Upon the completion of this thesis project, there are a few things that I would do 

differently. First, while I do believe that our LSA results were accurate, I would have preferred 

to use a scanner instead of phone photos to run ImageJ for LSA. Using a scanner would’ve made 

this portion of the project easier and marginally more accurate. I also would have liked to pay 

more attention to genetic variations and other differences within the vegetation that was chosen. 

Genetics were beyond the scope of this project, although I think that would have been an 

interesting exploration. I hope this will be explored in the future with the established plots. 

Lastly, I would have loved to have had time to include other variables that were measured and 

studied by students in the Ecology 332 course, such as stomata count and pubescence and their 

changes due to passive warming.  

Overall, I am proud of the work that was done for this project. I believe this project will 

be a good start for future graduate students to carry on and dig deeper in their research 

concerning climate change induced warming and its effects on southeastern native prairie 

grasslands using our plots with OTCs.  
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Appendix A: Tables 

Table 1: List of native prairie species planted in plots 

Family   Scientific Name  Common Name  

Asclepiadaceae (Milkweed)  Asclepias verticillata L. Whorled Milkweed  

Asteraceae (Aster)  Anaphalis margaritacea 

(L.) Benth. & Hook.f.  

Pearly Everlasting  

Asteraceae (Aster)  Coreopsis palmata Nutt. Prairie Coreopsis  

Asteraceae (Aster)  Rudbeckia hirta L. Black-Eyed Susan  

Asteraceae (Aster)  Symphyotrichum 

oblongifolium (Nutt.) 

G.L.Nesom 

Aromatic Aster  

Fabaceae (Legume)  Baptisia tinctoria (L.) R.Br. Small Yellow Wild Indigo  

Fabaceae (Legume)  Dalea purpurea Vent. Purple Prairie Clover  

Lamiaceae (Mint)  Monarda punctata L. Spotted Bee Balm  

Poaceae (Grass)  Panicum virgatum L.  Switch Grass  

Poaceae (Grass)  Schizachyrium scoparium 

(Michx.) Nash  

Little Bluestem  

Scrophulariaceae (Figwort)  Agalinis tenuifolia 

(Vahl)Raf.  

Slender False Foxglove   

Verbenaceae (Verbena)  Verbena stricta Vent. Hoary Vervain  

Violaceae (Violet)  Viola sororia f. priceana 

House 

Common Blue Violet, Bi-Color 
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Table 2: Ecosystem function traits under simulated climate change (OTC) treatments and in control plots. 

P values represent significance (p<0.05) of difference using the Wilcoxon signed rank non-parametric test 

PLOT 
LSA (mm2) 

Leaf Biomass 

(mg) 
SLA (mg/mm2) ANPP (mg) BNPP   (mg) 

All (mean) 

     

696.2552 

                

59.31451 

               

19.908025 18.956645   278.0297 

OTC (mean) 
569.252 35.00968 26.53723 20.31047    273.7622 

Control 

(mean) 
796.2584 83.61935 13.27882 17.60282 282.2972 

Difference 
227.0064 48.60967 -13.25841 -2.70765 8.535 

P-value                     

(two tailed) 

0.03313 0.006715 1.34E-07 0.8287 0.9025 

P-value               

(one tailed) 

0.01656 0.003358 6.71E-08 0.3207 0.4706 
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Table 3: Diversity indices of plant species found in the OTC and control plots. 

** represent statistically significant (p<0.05) differences.  

DIVERSITY INDEX OTC CONTROL 
Difference 
(Control-OTC) 

Mean species richness 7.75 11.5 3.75** 
Mean Shannon index 1.67 1.85 0.18 
Mean Simpson diversity 
index 0.77 0.81 0.04 
Beta diversity 1.32 0.67 -0.65 
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Appendix B: Figures 

 

 
Figure 1: Model of OTC with dimensions in details 

 

Figure 2: Model of a plot of the study site. On our site, we had this setup duplicated for a total of 4 

treatment areas and 2 control areas. 
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Figure 3: Daily average temperature recordings in OTC and control.  
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Figure 4: Boxplots of OTC vs Control for LSA, Biomass, SLA, ANPP, BNPP 
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Fig 5: Left: Monarda punctata (Spotted Beebalm) flowering outside the passive heating 

chambers (OTC). No individuals of the species were found in the OTC.  

Fig 6: Right: Rudbeckia hirta (Black Eyed Susan) flowering in the OTC and control plots.  
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Figure 7: Flowering phenology of 6 species over a one-year period (Fall 2023 to Summer 2024). 
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Fig 8: Boxplots representing diversity indices in OTC and control plots.  
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Figure 9: Results of a non-metric Multidimensional scaling (NMDS) multivariate analysis. The 

similarity matrix was displayed in an ordination plot using the Bray Curtis index. 
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