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ABSTRACT

In this paper we explore Bayesian inference and its application to the problem

of estimating the intensity function of a non-homogeneous Poisson process. These

processes model the behavior of phenomena in which one or more events, known as

arrivals, occur independently of one another over a certain period of time. We are

concerned with the number of events occurring during particular time intervals across

several realizations of the process. We show that given sufficient data, we are able

to construct a piecewise-constant function which accurately estimates the mean rates

on particular intervals. Further, we show that as we reduce these intervals in size, at

the limit we are able to reconstruct the original intensity function.

viii., 47 pages

iv



ACKNOWLEDGMENTS

I would like to thank the MCIS Department and Jacksonville State University

for the opportunity to pursue this degree.

I would like to thank Dr. Jason Cleveland for his patience and longsuffering.

Finally, I would like to thank my mother for her encouragement and support

throughout my degree.

James Mitchell Jensen II

v



TABLE OF CONTENTS

PAGE

LIST OF FIGURES viii

LIST OF TABLES ix

1 PRELIMINARIES 1
1.1 Experiments, sample spaces, and probability measures . . . . . . . . 1

1.1.1 Conditional probabilities . . . . . . . . . . . . . . . . . . . . . 2
1.2 The terms “almost all,” “almost certainly,” and “almost surely” . . . 3
1.3 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Related variables and conditional probabilities . . . . . . . . . 5
1.4 Probability distributions . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 The Poisson distribution . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 The Gamma distribution . . . . . . . . . . . . . . . . . . . . . 6

1.5 Sampling and estimation . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Error terms and Chebychev’s inequality . . . . . . . . . . . . . . . . . 7
1.7 The law of large numbers . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Stochastic processes and Poisson processes . . . . . . . . . . . . . . . 9

1.8.1 Realizations of a stochastic processes . . . . . . . . . . . . . . 10
1.9 Partitions and refinements . . . . . . . . . . . . . . . . . . . . . . . . 11

2 BAYES’ RULE AND BAYESIAN INFERENCE 13
2.1 The prior in Bayesian inference . . . . . . . . . . . . . . . . . . . . . 14
2.2 Posteriors as future priors . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Conjugate priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 The Gamma distribution is conjugate to a Poisson distribution . . . . 16
2.5 The role of the denominator . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Calculating the posterior probability distribution . . . . . . . . . . . 19
2.7 An example of Bayesian inference . . . . . . . . . . . . . . . . . . . . 20
2.8 Credible intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 INFERRING THE INTENSITY FUNCTION 23
3.1 Estimating the mean value on an interval . . . . . . . . . . . . . . . . 23

vi



3.2 Recovering the intensity function λ(t) . . . . . . . . . . . . . . . . . . 26

4 CREDIBLE INTERVALS FOR THE MEAN RATE 29
4.1 Adjusting credible intervals for non-unit interval lengths . . . . . . . 29
4.2 An upper bound for the number of realizations needed for a desired

credible interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 EXAMPLES OF INFERENCE 31
5.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Accuracy of the Estimates . . . . . . . . . . . . . . . . . . . . 32
5.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Hourly: P1 = {0, 1, 2, 3, 4} . . . . . . . . . . . . . . . . . . . . 34
5.2.2 Every quarter hour . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.3 10000 realizations . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 CONCLUSION 40

APPENDIX A. R CODE 41
Realization Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Inference of intensity function . . . . . . . . . . . . . . . . . . . . . . . . . 43

REFERENCES 46

vii



LIST OF FIGURES

PAGE
1 Alice and Bob’s Priors and Posteriors . . . . . . . . . . . . . . . . . . 20
2 Example 1: Estimated means with error bars . . . . . . . . . . . . . . 33
3 Example 2: True Intensity Function . . . . . . . . . . . . . . . . . . . 34
4 Example 2: Hourly Means . . . . . . . . . . . . . . . . . . . . . . . . 35
5 Example 2: Quarter hourly means . . . . . . . . . . . . . . . . . . . . 38
6 Example 2: Estimates inferred from 10000 simulated realizations . . . 39

viii



LIST OF TABLES

PAGE
1 Example 1: Prior Probabilities . . . . . . . . . . . . . . . . . . . . . . 32
2 Example 1: Total Arrivals by Hour . . . . . . . . . . . . . . . . . . . 33
3 Example 1: Posterior Probabilities . . . . . . . . . . . . . . . . . . . 33
4 Example 1: Accuracy of estimates . . . . . . . . . . . . . . . . . . . . 34
5 Example 2: Arrivals . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6 Example 2: Hourly Means . . . . . . . . . . . . . . . . . . . . . . . . 35
7 Example 2: Hourly Arrivals . . . . . . . . . . . . . . . . . . . . . . . 36
8 Example 2: Hourly Posteriors . . . . . . . . . . . . . . . . . . . . . . 36
9 Example 2: True means (Quarter hourly) . . . . . . . . . . . . . . . . 37
10 Example 2: Arrivals (Quarter hourly) . . . . . . . . . . . . . . . . . . 37
11 Example 2: Posteriors (Quarter hourly) . . . . . . . . . . . . . . . . . 38

ix



1. Preliminaries

1.1. Experiments, sample spaces, and probability measures. A ran-

dom experiment is a repeatable procedure with a well-defined set Ω of possible out-

comes. We call the set of outcomes Ω the sample space of the random experiment.

(Çınlar, 1975, pp. 1-2) An example of a random experiment is flipping a particular

coin. The sample space for this random experiment is the set Ω = {Heads,Tails}.

An event is a subset E of a sample space, such as {Heads}.

A probability measure Pr(E) is a function that assigns a value to some or

all of the events in a sample space, with the following properties:

P1. Pr(Ω) = 1,

P2. Pr(E) ≥ 0 for every event E, and

P3. for any countable sequence of disjoint events E1, E2, . . . on which the probability

measure is defined,

Pr

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

Pr (Ei) .

Together, these are known as the axioms of probability. Their formulation is due to

Kolmogorov. (Çınlar, 1975; Hájek, 2019)

From these properties we may deduce the following additional properties of

probability measures:

P4. Pr(E) ≤ 1 for any event E,
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P5. Pr (∅) = 0,

P6. For any two disjoint events E1 and E2, Pr (E1 ∪ E2) = Pr(E1) + Pr(E2), and

P7. Let p ∈ [0, 1], and let EC denote the complement of E. Then if Pr(E) = p,

then Pr
(
EC
)

= 1− p.

Property P4 is an immediate and obvious consequence of P1 and P3. Properties

P5 and P6 follow from consideration of sequences consisting entirely of the empty

set except for one or two other events. Note that P6 is sometimes taken as one

of the axioms of probability instead of P3 (Hájek, 2019), in which case we may

require probability measures to assign probabilities to all events in a sample space, a

desirable restriction that unfortunately makes P3 impossible to satisfy in the case of

uncountable sample spaces (Çınlar, 1975, p. 3).

For two events A and B, the conditional probability P (A|B) is the prob-

ability of the outcome of the random experiment being an element of event A given

that the outcome is an element of event B. We will usually read this simply as “the

probability of A given B.”

1.1.1. Conditional probabilities. A conditional probability is the proba-

bility of an event given that another event has occurred. For example, let Ω =

{1, 2, 3, 4, 5, 6} be the sample space, corresponding to the roll of a fair six-sided die,

let A = {2, 4, 6} be the event in which the die lands on an even number, and let

B = {4, 5, 6} be the event in which the die lands on one of the three highest faces.

Considered individually, A and B each have a probability 1/2 of occurring.

However, if we somehow know that the event B has occurred or will occur, then the

only possible values are 4, 5, or 6. In two out of the three cases, the event A also

occurs, so the probability of A given this extra information is 2/3, not 1/2. We write

2



this as Pr(A|B) = 2/3, and say that the probability of A given B equals 2/3.

We will say more about conditional probability in section 2.

1.2. The terms “almost all,” “almost certainly,” and “almost surely”.

Suppose an event E of some sample space has Pr(E) = 1. Then we say that E will

almost surely or almost certainly occur. Similarly, if all outcomes in E have a certain

property, then we say that almost all outcomes have that property.

1.3. Random variables. A random variable X(ω) is a function defined on

a sample space Ω that assigns a real number to each outcome ω ∈ Ω (Çınlar, 1975).

As an example, suppose we consider the set of ordered pairs

Ω = {〈1, 1〉 , 〈1, 2〉 , . . . , 〈5, 6〉 , 〈6, 6〉}

of all possible rolls of two six-sided dice as a sample space. We might wish to consider

only the sum of the two dice and define the random variable X(ω) = X (〈a, b〉) = a+b.

Now consider the probability Pr ({ω : X(ω) = x}) of the event containing all

outcomes in which X(ω) takes on some value x, such as probability of two fair dice

summing to a certain number. For convenience, we will often neglect the arguments

for random variables, writing X(ω) as X. For the same reason we will also abbreviate

probability expressions involving random variables by writing only the predicate for

the set. Thus the expression above would be written as simply Pr(X = x).

A random variable may take on countably-many values, in which case we call it

a discrete random variable, or it may take on uncountably-many values, in which case

we call it a continuous random variable. An example of a discrete random variable

is the random variable X given above that sums the results of rolling two dice. An

example of a continuous random variable is the random variable Y (〈a, b〉) = |a − b|

3



representing the absolute difference between two randomly-chosen real numbers a, b

on the interval [0, 1]. In this case, Y itself takes on all values in [0, 1].

For discrete random variables, the probability measure Pr(X = x) is known

as the probability mass function or PMF for the variable. For continuous random

variables, the probability of individual values Pr(X = x) is not usually well-defined,

due to axiom P3. Instead, a continuous random variable will have a probability den-

sity function, or PDF, p(x) that associates nonnegative real numbers to each possible

value taken on by the variable, with the additional property that
∫∞
−∞ p(x) dx = 1.

The integral of a PDF is called a cumulative density function or CDF.

We may thus speak of the probability of the value of the variable being included

in a set of possible values, which if well-defined will be an integral of the probability

density function. To return to the case of the random variable Y from before, we

might ask what the probability of the distance between two points a and b being

between 1/4 and 1/2, and this probability is the integral

Pr

(
1

4
≤ Y ≤ 1

2

)
=

∫ 1
2

1
4

p(y) dy

where p(y) is the probability density function associated with Y .

The expected value E[X] of a random variable X is defined in two ways:

• If X is a discrete random variable taking on the values in the set X ′, then the

expected value is defined as

E[X] =
∑
x∈X′

[x · Pr(X = x)] .

• If X is a continuous random variable with PDF p(x), then the expected value

4



is defined as

E[X] =

∫ ∞
−∞

x · p(x) dx.

Finally, we note that since each random variable is in fact a function of the

form X : Ω → R, we may combine two or more random variables in the usual ways:

sum, difference, product, scalar product, quotient, and composition. Provided it is

well-defined, the resulting function X ′ : Ω→ R will then itself be a random variable.

In particular, the mean of two or more random variables, being a scalar product of

the sum of those variables, will be a random variable.

1.3.1. Related variables and conditional probabilities. We will call two ran-

dom variables X and Y related if they are defined on the same sample space. For

example, suppose X and Y are both defined for the results of rolling two six-sided

dice, with X being the sum of two dice when rolled and Y being the higher of the

two dice. We see that Y can normally take any integer value from 1 to 6, but if it is

given that X = 10, then the only possibilities for Y will be Y = 5 or Y = 6.

Two random variables X and Y are said to be independent if the value of one

does not affect the probability of any value for the other — that is, if Pr(X = x|Y =

y) = Pr(X = x) and Pr(Y = y|X = x) = Pr(Y = y) for all values x and y. It is clear

that random variables that are not related are always independent.

1.4. Probability distributions. The term probability distribution refers

to either a probability mass function or a probability density function. The former

is known as a discrete probability distribution while the latter is called a continuous

probability distribution.

There are several named families of probability distributions. The most well-

known are the normal distributions, written Normal (µ, σ2), where the parameters µ

5



and σ2 specify precisely which distribution in the family is meant. We will be dealing

extensively with the gamma distribution, written Gamma (α, β), and the Poisson

distribution, written Poisson (λt). Their parameters will be explained later.

The symbol ∼ is used to indicate that a random variable has a certain proba-

bility distribution as its PMF or PDF. For example, if the discrete random variable

X has a Poisson distribution as its PMF, we write X ∼ Poisson (λ), and say that X is

Poisson-distributed. If two or more variables have the same probability distribution

as their PMF or PDF, we say the variables are identically-distributed.

1.4.1. The Poisson distribution. A Poisson distribution is specified by one pa-

rameter, λ, a rate parameter. A Poisson distribution models the number of arrivals

occurring on a unit time interval. It is a discrete probability distribution and its PMF

is given by

Pr (K = k) =
λke−λ

k!
,

where K is a random variable representing the number of arrivals on the time interval.

The expected value of K is E[K] = λ.

1.4.2. The Gamma distribution. A gamma distribution is specified by two pa-

rameters, the shape α and a rate parameter β. It can be used to model the expected

length of time until the k-th arrival for a mean rate of λ arrivals per unit time interval

by letting α = k and β = λ.

It is a continuous probability distribution, with a PDF given by

p(t) =
βαtα−1e−βt

Γ(α)
,

where t is a length of time. If X is a Gamma-distributed random variable representing

6



the length of time, the expected value of X is E[X] = α
β
.

1.5. Sampling and estimation. Sampling is the act of performing a ran-

dom experiment one or more times in order to generate a sequence of outcomes, or

samples, drawn from the sample space. From these outcomes we can compute the

values of one or more random variables defined on the sample space. For example,

one might flip a coin repeatedly and record whether it landed heads or tails on each

flip, recording 1 for heads and 0 for tails. Alternatively, one might select a sequence

of leaves on a trees and record the length of each.

Once the sequence of samples has been collected, we can use the properties of

the samples to estimate unknown properties of the sample space. For example, if it

is unknown how fair a particular coin is, we can estimate the bias by computing the

proportion of flips that landed heads. This proportion is a point estimate of the

probability of the coin landing heads.1 The method for producing this estimate is a

function of random variables; we call such a function an estimator.

An estimator is called unbiased if its expected value is equal to the true param-

eter value. A paramter that is not unbiased is called biased. Similarly, an estimator X

is called consistent if its expected value almost certainly converges to the true value

of the parameter as the sample size tends toward infinity.

1.6. Error terms and Chebychev’s inequality. An error term or error

is a random variable representing the difference between a point estimate and the

true value of the parameter being estimated. If θ is the true value of a parameter

and θ̂ the point estimate of the parameter, then the error term is θ̂− θ. The absolute

error is the absolute value of the error; i.e.
∣∣∣θ̂ − θ∣∣∣.

1More specifically, since the probability of a coin landing heads is Bernoulli-distributed, the
proportion of heads in the sample is an estimate of the value of the parameter p of the Bernoulli
distribution.
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Chebyshev’s inequality is a theorem about the relationship between a ran-

dom variable and its expected value. Let X be a random variable with expected value

µ and standard deviation σ, and let k be a positive real number. Then

Pr (|X − µ| ≥ kσ) ≤ 1

k2
.

This theorem can be used to set an upper bound to the size of a confidence interval (or

credible interval if using Bayesian inference) for an estimator.2 If the random variable

X is an unbiased estimator for some parameter θ, then by letting k =
√

20 ≈ 4.447

we see that

Pr
(
|X − θ| ≥

√
20σ
)
≤ 1

20
= 0.05.

Thus a 95% confidence interval or credible interval will be no larger than
√

20 standard

deviations from the mean. Note that this is merely an upper bound; the actual

computed interval will usually be smaller, possibly much smaller.

1.7. The law of large numbers. There are two forms of the law of large

numbers, but here we are concerned only with the strong law of large numbers, which

states that as a random experiment is repeated many times, the average of the re-

sults will converge toward the expected value. Stated formally: consider a sequence

X1, X2, . . . of independent and identically-distributed random variables, where each

variable Xi is understood as the result of the i-th repetition of the random experi-

ment. Since the variables are identically-distributed, E[Xi] = E[Xj] for all positive

integers i and j; denote this value E[X]. Now let Xn = 1
n

∑n
i=1Xi be the mean of the

first n random variables in the sequence. Then Xn → E[X] as n→∞. (Ross, 2006,

2It should be noted that since Chebyshev’s inequality is a statement about the mean of a variable,
not the true value of a parameter, using it in this manner properly requires the estimator to be
unbiased. However, since it is an upper bound and frequently much larger than the actual value, an
estimator with a small bias will usually pose no significant issues.

8



p. 79)

Another way of stating the result above is that

Pr
(

lim
n→∞

Xn = E[X]
)

= 1.

1.8. Stochastic processes and Poisson processes. A stochastic process

is a collection of related random variables, usually thought of as modeling some real-

world phenomenon (Çınlar, 1975, p. 7). For example, suppose we flip a coin n times

and record the results. We define the random variables X1, X2, . . . , Xn where each Xi

is a random variable representing the result of the i-th coin flip, with Xi = 1 if the

coin lands heads and Xi = 0 if the coin lands tails. Then the collection of random

variables {Xi, 0 ≤ i ≤ n} is a stochastic process. (In particular, it is a Bernoulli

process.)

An arrival is a phenomenon occuring at a particular time or during a par-

ticular interval of time. A stochastic process is called an arrival process if it is a

collection of random variables Nt, with t nonnegative, each representing the number

arrivals occuring by the time t, with the following properties (Çınlar, 1975, p. 71):

1. Nt is a nonnegative integer,

2. if t1 < t2, then Nt1 ≤ Nt2 , and

3. if t1 < t2, then Nt2 − Nt1 will be the number of arrivals occurring after t1 but

no later than t2.

A Poisson process is an arrival process consisting of the random variables

Nt, 0 ≤ t ≤ S, with the following properties (Çınlar, 1975, p. 71):

PP1. N0 = 0,
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PP2. if t1 < t2 then Nt2 − Nt1 ∼ Poisson ((t2 − t1)λ1), where λ1 is the expected

number of arrivals occuring on an interval of unit length.

PP3. if t1 < t2 < t3 < t4, then the random variables Nt4 − Nt3 and Nt2 − Nt1 are

independent. (That is, for any two non-overlapping time intervals, the number

of arrivals occurring on one does not affect the other.)

Poisson processes are used to model the occurrence of arrivals over a period of time,

such as the arrival of customers at a store during operating hours. However, its

constant rate coefficient λ1 causes it to be a poor fit for modeling phenomena where

arrivals are more likely to occur at some times than at other times, as in the example

of a store; people are presumably more likely to go shopping outside of normal work

hours for the area.

We can better model such phenomena by replacing PP2 above with the fol-

lowing:

PP2a. If t1 < t2, then Nt2 −Nt1 ∼ Poisson
(∫ t2

t1
λ(τ) dτ

)
, where λ(τ) is an intensity

function specifying the likelihood of arrivals for each point on the period [0, S].

An arrival process meeting this new definition is called a non-homogeneous Pois-

son process, or NHPP, and it is with these sorts of processes that we will primarily

concern ourselves in Section 2.

1.8.1. Realizations of a stochastic processes. Suppose we perform a random

experiment with a sample space Ω, with the result that outcome ω ∈ Ω occurs.

Then we call ω a realization of the sample space. If the random variables of a

stochastic process are defined on Ω, then we say that ω is a realization of the stochastic

process. Repeating the random experiment will generate a finite or infinite sequence

of realizations ω1, ω2, ω3, . . ..

10



When discussing a realization or sequence of realizations of a stochastic pro-

cess, we are often concerned with the values of the random variables of the process

for each realization. Thus if X is a random variable of the process, and ω1, ω2, . . . , ωk

are k realizations of the process, we may consider the sequence of values

X(ω1), X(ω2), . . . , X(ωk),

where X(ωi) is the value of the random variable X on the i-th realization. When

we observe the values of the random variables of the process associated with a single

realization, we say that we “observe a realization of the process.” When we do this

for a sequence of k realizations, we say we “observe k realizations of the process.”

It is often more natural to think of the sequence X(ω1), X(ω2), X(ω3), . . .

as the values of a sequence of random values X1, X2, X3, . . .. We may make this

notion rigorous by defining each Xi as a function whose domain is the set Ω∗ =

{〈ω1, ω2, ω3, . . .〉 : ωj ∈ Ω, j ≥ 0} of all sequences of outcomes, treating each sequence

of realizations of the process as an outcome in a larger sample space. A similar defini-

tion can be made for sequences of finite length; i.e. a sequence of outcomes of length

k will be treated as an outcome in the sample space Ωk = Ω×Ω× · · · ×Ω (k times).

1.9. Partitions and refinements. A partition P of a closed interval [a, b]

is a set of n points {x0 = a, x1, x2, . . . , xn−1, xn = b} ⊂ [a, b] with the property that

xi−1 < xi for 0 < i ≤ n. These points form a sequence of n subintervals

[x0, x1], [x1, x2], . . . , [xn−1, xn]

of the interval [a, b] with the properties that every point in [a, b] is also in at least

one subinterval, and no two subintervals share more than an endpoint in common.
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The subintervals in this sequence are called the subintervals of the partition P . The

length of the largest such subinterval is called the mesh of P and is denoted |P|.

(Mattuck, 1999)

If R is also a partition of [a, b] with the property that P ⊆ R, then R is a

refinement of P . Similarly, a sequence of refinements P1,P2,P3, . . . of a partition

P is a sequence of partitions with the property that

P = P1 ⊆ P2 ⊆ P3 ⊆ · · · .

That is, each partition in the sequence is a refinement of the previous partition in the

sequence. (Mattuck, 1999)
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2. Bayes’ rule and Bayesian inference

Bayes’ rule is a theorem about conditional probability. Given two events A

and B, with Pr(B) 6= 0, the conditional probability of A given B can be calculated

as

Pr(A|B) =
Pr(B|A) · Pr(A)

Pr(B)
.

Three parts of the equation are given standard names:

• the event B is known as the evidence,

• the conditional probability Pr(B|A) is the likelihood,

• the probability Pr(A) is known as the prior probability, and

• the conditional probability Pr(A|B) is known as the posterior probability.

The probability of the evidence Pr(B) does not have a standard name, but we will

call it simply the denominator, following Ben Lambert. (Lambert, 2018)

Most often when using Bayes’ rule we are considering probability of a random

variable θ having a particular value given that we have observed a certain set of data

X. In this case we will usually write Bayes’s rule in the form

Pr(θ|X) =
Pr(X|θ) · Pr(θ)

Pr(X)
.
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Bayesian inference is the use of Bayes’ rule in statistical inference. This

presents several challenges but can provide more robust results than conventional

frequentist methods. When doing Bayesian inference, we treat the prior and posterior

not as particular probabilities but as probability distributions with parameter θ, and

call them the prior probability distribution and the posterior probability distribution,

or simply the prior distribution and posterior distribution. The likelihood P (X|θ) in

this case will also be a function of the parameter θ and will be based on a probability

distribution, but because its values will not generally sum or integrate to 1 across all

values θ, we will not consider it a probability distribution and will simply call it the

likelihood function instead.3

If the distribution has more than one parameter, we simply extend the notation

to accommodate multiple parameters. For example, if the prior distribution has two

parameters, α and β, we may write it as Pr(α, β). Similarly, we would write a posterior

distribution with those two parameters as Pr(α, β|X) and the likelihood function as

Pr(X|α, β).

2.1. The prior in Bayesian inference. In the ideal case, the prior prob-

ability of an event or parameter value is known in advance. Unfortunately, this is

often not the case when inferring the value of a parameter. In such cases, a prior

is chosen based on pre-existing information and opinion. For example, a statistician

investigating the rate at which customers enter a particular store may consult security

camera footage, ask the store attendants for estimates, or even observe one or more

days before attempting the experiment in order to determine an appropriate prior.

The choice of prior is typically considered to be subjective, not objective.

3In cases where the probability distribution associated with any of the prior, posterior, or like-
lihood is continuous, the notation above is techincally incorrect, because in that case one or more
of those terms refer not to a probability but a probability density. It is easily seen that Bayes’
theorem properly needs 23 = 8 forms to account for all these cases. However, as this distinction
rarely matters in practice, we will retain the given form for all such cases as an abuse of notation.
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This is because of the Bayesian view of probability as a subjective “degree of belief,”

not necessarily an objective property. For example, following this interpretation of

probability we might assign probabilities to the various possible outcomes of an event

that has already happened, but whose outcome is still unknown.

The classic example of this is a coin which has been flipped but not yet re-

vealed. We might assign a probability 0.5 that the coin has landed heads, and likewise

for tails, reflecting an initial assumption that the coin is fair. Or perhaps we believe

we have reason to assign probability 0.75 to heads and 0.25 to tails, from some ad-

ditional source of information about the coin. Regarldess, the coin has already been

flipped, and the outcome of the flip has already been determined. Thus the probabil-

ities we assign to the two outcomes cannot be facts about the event itself, but about

the information available to us.

A common objection to Bayesian inference is that with the proper choice of

prior, we can produce any desired posterior. Making this choice subjective then seems

to be a license to bias the data as we wish. The Bayesian response to this objection

is threefold. First, provided the prior is stated explicitly, it is open to inspection

and criticism. Anyone who objects to a chosen prior may choose a different prior

and make a new calculation of the posterior. Second, given sufficient evidence, the

posteriors produced by different priors will tend to converge. (Stone, 2013, p. 126)

Finally, Bayesian statisticians have several methods at their disposal for choos-

ing priors that emphasize the role of the data in determining the posterior. These

include choosing a so-called uninformative prior, the method of moments, and using

Bayesian hierarchical models. (Wijono, 2022)

2.2. Posteriors as future priors. Where the prior represents the information

available to us before beginning a formal experiment or investigation, the posterior
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represents the information available to us afterward — which continues to include the

information present in the prior. Contemporary Bayesian statisticians often think of

the posterior as an update to the prior. The posterior can then be used as the prior

in any future experiments or investigations into the same subject, since it represents

the state of our knowledge and belief at that time. By utilizing posteriors as priors in

future inference, our understanding may be iteratively updated. (Donovan & Mickey,

2019)

2.3. Conjugate priors. In some instances when applying Bayes’ rule, the

prior and posterior distributions will be in the same family of distributons. For

example, they might both be gamma distributions. In this case, we call the prior

distribution a conjugate prior, and we say that prior distribution is conjugate to the

distriubution from which the likelihood function is drawn; e.g. the Beta distribution is

conjugate to the Bernoulli distribution. Conjugate priors often make the computation

of posterior distributions much easier. (Winkler, 1972, pp. 147-148)

Whether a prior distribution is a conjugate prior depends on the form taken

by the likelihood function. As an example, if the prior distribution is a gamma

distribution and the likelihood function is drawn from a Poisson distribution, then

the posterior distribution will also be gamma distribution, as we will see below. On

the other hand, if the likelihood function were the PMF of a Bernoulli distribution,

then the posterior distribution will not be a gamma distribution. We thus say that

the gamma distribution is conjugate to a Poisson distribution, but not conjugate to

a Bernoulli distribution.

2.4. The Gamma distribution is conjugate to a Poisson distribution.

In Section 3 we will utilize a Gamma prior in order to estimate the rate parameter λ of

a Poisson-distributed random variable. We choose Gamma for two reasons: first, its
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mean, α/β, naturally estimates the rate of arrivals when α arrivals are observed across

β unit time intervals; and secondly, because it is conjugate to a Poisson distribution.

We will demonstrate the latter fact below.

Lemma 1. A Gamma distribution is conjugate to a Poisson distribution.

Proof. Suppose that we observe n arrivals on a Poisson process across a unit interval

of time, either on a single realization of the process or multiple realizations, and we

seek to estimate the rate λ of the process. We see that

Pr (n|λ) = Poisson(λ) =
λne−λ

n!
.

We choose

Pr(λ) = Gamma(α0, β0) =
βα0

0 λα0−1e−β0λ

Γ (α0)

as our prior probability distribution. Together Pr (n|λ) and Pr(λ) give us

Pr (n|λ) Pr(λ) =
λne−λ

n!
× βα0

0 λα0−1e−β0λ

Γ (α0)
=

βα0
0

n! Γ(α0)
λ(α0+n)−1e−(β+1)λ
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and

Pr(n) =

∫ ∞
0

Pr (n|θ) Pr(θ) dθ

=

∫ ∞
0

βα0
0

n! Γ(α0)
θ(α0+n)−1e−(β+1)θ dθ

=
βα0

0

n! Γ(α0)

∫ ∞
0

θ(α0+n)−1e−(β+1)θ dθ

=
(β0 + 1)α0+n

Γ(α0 + n)
× Γ(α0 + n)

(β0 + 1)α0+n
× βα0

0

n! Γ(α0)

∫ ∞
0

θ(α0+n)−1e−(β+1)θ dθ

=
Γ(α0 + n)

(β0 + 1)α0+n
× βα0

0

n! Γ(α0)

∫ ∞
0

(β0 + 1)α0+n

Γ(α0 + n)
θ(α0+n)−1e−(β+1)θ dθ

=
Γ(α0 + n)

(β0 + 1)α0+n
× βα0

0

n! Γ(α0)
×
∫ ∞

0

Gamma (α0 + n, β0 + 1) dθ

=
Γ(α0 + n)

(β0 + 1)α0+n
× βα0

0

n! Γ(α0)
× 1

=
Γ(α0 + n)

(β0 + 1)α0+n
× βα0

0

n! Γ(α0)
.

We now apply the above results to Bayes’ theorem to calculate the posterior

distribution:

Pr(λ|n) =
Pr(n|λ) Pr(λ)

Pr(n)

=

β
α0
0

n! Γ(α0)
λ(α0+n)−1e−(β+1)λ

Γ(α0+n)
(β0+1)α0+n

× β
α0
0

n! Γ(α0)

=
(β0 + 1)α0+n

Γ(α0 + n)
λ(α0+n)−1e−(β+1)λ

= Gamma (α0 + n, β0 + 1) .

We can generalize the results of the above lemma to k > 1 realizations:

Corollary 1. Let n be the total number of arrivals observed across k realizations
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of a Poisson process. Let the prior probability distribution for the rate parameter λ

of the process be Gamma (α, β). Then the posterior probability distribution will be

Gamma (α + n, β + k).

Proof. Let n1, n2, . . . , nk be the number of arrivals on each of k observed realizations

of the process, such that n =
∑k

i=1 ni. By applying Bayes’ theorem repeatedly,

utilizing the posterior probability from each application as the prior probability in

the succeeding application, the corollary follows.

2.5. The role of the denominator. The denominator in Bayes’ theorem

plays a special role when the posterior is a probability distribution: it is the sum or

integral of the numerator Pr
(
X|θ

)
× Pr(θ) across all possible values θ ∈ Θ. In other

words,

Pr
(
X
)

=
∑
t∈Θ

[
Pr
(
X|t
)
× Pr(t)

]
(if the posterior is discrete)

or

Pr
(
X
)

=

∫
Θ

Pr
(
X|t
)
× Pr(t) dt. (if the posterior in continuous)

This can be easily seen by considering that it must be a single value which causes the

whole fraction to sum or integrate to 1 (and thus to be a probability distribution).

(Lambert, 2018, pp. 109-110)

2.6. Calculating the posterior probability distribution. As seen above,

the posterior probability distribution can be specified exactly when the prior distri-

bution is a Gamma distribution and the likelihood function comes from a Poisson

distribution. However, in some cases, finding the denominator analytically is infea-

sible or impossible. In these cases Markov Chain Monte Carlo techniques can be

used to approximate the posterior distribution without calculating the denominator

directly. Methods include the Metropolis algorithm and Gibbs sampling. (Kruschke,
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FIG. 1. Alice and Bob’s Priors and Posteriors

2014, pp. 144-146, 162)

2.7. An example of Bayesian inference. We will illustrate the process of

performing Bayesian inference with an example: Let Alice and Bob be two Bayesian

statisticians both observing the results of flipping a particular coin 1,000 times. Alice

knows nothing about the coin and so chooses the uninformative prior Beta(1, 1).

Bob, on the other hand, was given a chance to flip the coin twenty times before the

beginning of the experiment, and observed that it landed on heads fifteen times and

tails only five times. Bob therefore chooses the prior Beta(15, 5), in effect assuming

the coin is biased toward heads. These prior distributions are quite different, as can

be seen in Figure 1a.

During the course of the experiment, both Alice and Bob observe the coin

landing heads 250 times and tails 750 times. Applying Bayes’ rule using a Bernoulli

likelihood function, Alice calculates the posterior distribution as Beta(251, 751), while

Bob calculates the posterior distribution as Beta(265, 755). These distributions are

not noticeably different, as can be seen in Figure 1b.

This lack of difference can be seen another way. Before the experiment, Alice
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would have estimated the probability p of the coin landing heads to be 1/2 = 0.5, while

Bob would have estimated it to be 15/20 = 0.75. After the experiment, Alice would

estimate p to be 251/1002 ≈ 0.25 while Bob would estimate it to be 265/1020 ≈ 0.26

a difference of less than 0.01. Had more data been collected this difference would

likely have been even smaller.

Moreover, Alice and Bob may use their posterior distributions as the prior

distributions in a future experiment on the same coin. The evidence collected will

cause their new posterior distributions to converge even more closely. The ability to

use the results of previous experiments to inform the results of new experiments is

one of the advantages of Bayesian inference.

2.8. Credible intervals. Once the posterior distribution has been calcu-

lated, we may use it to calculate a credible interval for the value of the parameter.

(Winkler, 1972, p. 177) Credible intervals are the Bayesian analogue of the con-

fidence interval used in conventional statistics. Both involve computing lower and

upper bounds for a parameter θ in order to in some sense capture the value of a

parameter with probability γ. They differ in two ways. First, since credible intervals

are computed from posterior probability distributions, they incorporate information

both from the experiment and from the prior. Confidence intervals include only infor-

mation from the experiment. Secondly, they differ in how the parameter and interval

bounds are interpreted.

Confidence intervals treat the parameter as a fixed value and conceive of the

confidence level in terms of the probability of the interval bounds capturing the value

of the parameter. Credible intervals treat the parameter as a random variable with

a probability distribution, and they treat the interval bounds as the endpoints of an

interval with a chosen probability mass on the probability distribution. As such, it
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should be noted that while students of statistics are frequently reminded that a 95%

confidence intervals does not mean that there is 0.95 probability that the parameter

is in the interval, a 95% credible interval does indicate this!

In order to calculate a credible interval with probability mass γ ∈ (0, 1) for

a given parameter θ, we choose real numbers a ≤ b such that Pr(a ≤ θ ≤ b) ≥ γ.

While in principle any such interval may be chosen, it is customary when working

with continous random variables to choose a and b such that Pr(θ < a) = Pr(θ >

b) = (1− γ)/2. As an example, if γ = 0.95, then we would choose a and b such that

Pr(θ < a) = Pr(θ > b) = 0.025.

In order to compute a and b using this method, we make use of the inverse

cumulative distribution function for the probability distribution for the random vari-

able θ. Suppose F (x) is the CDF for θ, and let us denote its inverse as F−1(x). Then

for any real number x, Pr(θ < x) = F−1(x). Thus we use this function to choose

a = F−1(0.025) and b = F−1(1− 0.025) = F−1(0.975).

It is clear that this method depends on our ability to find or approximate the

inverse CDF for a probability distribution. This is often not an easy task to perform

by hand, since in many cases the CDF of a probability distribution has no closed

form. Fortunately, this is usually easily done with the aid of computer software.
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3. Inferring the intensity function

Consider a non-homogeneous Poisson process (NHPP) defined on the interval

0 ≤ t ≤ S, with random variables Nt for each value of t and a continuous intensity

function λ(t). Let P be any partition of [0, S]. Without loss of generality, we consider

only one such interval, calling it T and denoting the length of T as |T |. Let the random

variable NT (ω) be the number of arrivals occurring on the interval T on a realization

ω.

We will utilize a Gamma prior probability distribution with parameters α and

β. Such a prior has two advantages. First, it is conjugate to the Poisson distribution,

greatly simplifying the calculation of the prior. Second, its expected value is α/β,

which naturally estimates the mean number of arrivals on a unit-interval period of a

process after observing α arrivals on β realizations.

We will use the expected value of the posterior probability distribution as our

estimator for the mean value of the λ(t) on the interval, adjusted for the length of

the interval. Thus if our posterior for the interval T is Gamma(α + n, β + k), our

estimate will be

α + n

(β + k)|T |
.

3.1. Estimating the mean value on an interval. Given the above setup,

we seek to estimate the mean value of the intensity function λ(t) on the interval T ;

call this value λT =
∫
T
λ(t) dt, and denote our point estimate λ̂T . We assume that
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λT is Gamma-distributed, with a prior distribution Gamma(α0, β0) for some positive

real numbers α0, β0. We observe a sequence of realizations of the NHPP of length k,

namely ω1, ω2, ω3, . . . , ωk, giving the sequence of valuesNT (ω1), NT (ω2), NT (ω3), . . . , NT (ωk)

for the random variable NT (ω), each representing the numbers of arrivals occuring

on the interval T on each realization.

Let n =
∑k

i=1 NT (ωi) be the total number of arrivals across all k realizations

of the process. Then by using Bayes’ Theorem, the posterior distribution

Pr(λ̂T |n, k) =
Pr(n, k|λ̂T )× Pr(λ̂T )

Pr(n, k)

is given by Gamma(α0 + n, β0 + k).

We begin by proving a lemma for the case when T has unit length.

Lemma 2. If the interval T has unit length, then the estimator λ̂T = E[Gamma(α0 +

n, β0 + k)] is a consistent estimator of λT .

Proof. Suppose that |T | = 1. Then the expected value of the posterior may be used

without adjustment as the estimator for the mean rate of the process, as explained

above. By definition, for λ̂T to be a consistent estimator of λT , it must be the case

that

Pr
(

lim
k→∞

λ̂T = λT

)
= 1.

We note that we are not attempting to show that λ̂T is an unbiased estimator, as

this will depend on the chosen prior. It is not too hard to see that λ̂T is an unbiased

estimator if and only if E[Pr(λ)] = λT , that is, if the expected value of the chosen prior

is already correct. Further, the amount of bias will be proportional to the difference∣∣E[Pr(λ)]− λT
∣∣.

We see from the definition of an NHPP that NT ∼ Poisson
(
λT
)
. We wish to
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estimate the value of this parameter using Bayesian inference. We assume that the

value of λT is a gamma-distributed random variable with parameters α and β. We

will be using Bayes’ rule to calculate a posterior distribution for λT , so we begin with

Gamma(α, β) as our prior distribution.

We then observe k realizations of the process, yielding a sequence of values

NT (ω1), NT (ω2), . . . , NT (ωk), where each value NT (ωi) is the number of arrivals on

the interval T on the i-th realization of the process. Let n =
∑k

i=1NT (ωi) be the

total number of arrivals on the interval T across all k realizations. Our posterior

distribution is then Gamma (α + n, β + k) by Lemma 1, with an expected value of

λ̂T = α+n
β+k

; we take this to be our estimator for λT .

What we will show is that this method provides increasingly-accurate estima-

tions of λT as we observe more realizations of the process. As mentioned in subsubsec-

tion 1.7.1 above, we may recharacterize the sequence of valuesNT (ω1), NT (ω2), . . . , NT (ωk)

as a sequence of random variables X1 = NT (ω1), X2 = NT (ω2), . . . , Xk = NT (ωk). We

then see that their mean Xk := 1
k

∑k
i=1Xi is a random variable representing the mean

number of arrivals per realization on the interval. Furthermore, by the strong law of

large numbers, the limit of the mean converges to the expected value with probability

1. In other words, with probability 1,

(1) X := lim
k→∞

Xk = E[NT ] = λT

We are now in a position to recharacterize n as a function of k. Let n(k) :=

kXk =
∑k

i=1Xi and note that this is equivalent to the way we defined n above, except

that it is now clearly itself a random variable, being the sum of k random variables.

We now consider the estimator λ̂k = α+n(k)
β+k

as k increases—that is, as we observe
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increasingly-many realizations. We then have

lim
k→∞

λ̂k = lim
k→∞

α + n(k)

β + k
(2)

= lim
k→∞

[
α

β + k
+

n(k)

β + k

]
(3)

= lim
k→∞

n(k)

β + k
(4)

= lim
k→∞

kXk

β + k
(5)

= lim
k→∞

Xk

β
k

+ 1
(6)

= lim
k→∞

Xk

0 + 1
(7)

= lim
k→∞

Xk = λT . [with probability 1](8)

We thus see that regardless of the initial prior parameters α and β, with

sufficient evidence, our estimator λ̂T will almost certainly converge to the true value

λT . Since this is true for any subinterval T , it is true for every subinterval in P .

Having proven the lemma, the following theorem follows immediately:

Theorem 1. The estimator λ̂T = E[Gamma(α0 + n, β0 + k)]|T | is a consistent esti-

mator of λT .

Having established that sufficient evidence allows the mean value λT = 1
|T |

∫
T
λ(t) dt

to be recovered for any subinterval T , we now consider whether we can recover the

original intensity function λ(t).

3.2. Recovering the intensity function λ(t). Consider a sequence of re-

finements P1,P2,P3, . . . of the partition P with the property that limi→∞ |Pi| = 0.

Let Ti,j denote the j-th subinterval in the partition Pi, and let λTi,j denote the mean
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value of the intensity function λ(t) on the subinterval Ti,j. Let

λ̂i,k(t) = E
[
Gamma(α + nTi,j(k), β + k)

]
|Ti,j| , t ∈ Ti,j

be the piecewise constant estimation of λ(t) constructed by observing nTi,j(k) arrivals

on the subinterval Ti,j across k realizations with prior parameters α and β. Finally,

define the sequence of estimator functions λ̂1(t), λ̂2(t), λ̂3(t), . . . by

λ̂i(t) = lim
k→∞

E
[
Gamma(α + nTi,j(k), β + k)

]
|Ti,j| , t ∈ Ti,j, i ≥ 1.

It follows from Theorem 1 that

Pr
(
λ̂i(t) = λTi,j

)
= 1, t ∈ Ti,j.

Since this result is almost certain, in the following theorem we will dispense

with the probability notation, treating the result as simply true, with the caveat that

any result following from it is in fact only almost certain.

Theorem 2. The sequence of estimator functions λ̂1(t), λ̂2(t), λ̂3(t), . . . converges

pointwise to λ(t) as i→∞.

Proof. Consider the absolute difference
∣∣∣λ̂(t)− λ(t)

∣∣∣ for each point t in each subinter-

val T of each refinement. What is needed is to show that
∣∣∣λ̂(t)− λ(t)

∣∣∣→ 0 as i→∞

for each subinterval T .

It is clear that the difference cannot be greater than that between the supre-

mum and infimum of λ(t) on T : since λ(t) is continouous, the Integral Mean Value

Theorem guarantees that there is a point t0 ∈ T such that λ(t0) = λT . Since t0 ∈ T ,

the value λ(t0) must be no less than the infimum and no greater than the supremum
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of the function on T . Therefore,

(9)
∣∣λT − λ(t)

∣∣ ≤ sup
T
λ(t)− inf

T
λ(t).

But since |Pi| → 0 as i → ∞, supT λ(t) − infT λ(t) → 0 as i → ∞. It follows that∣∣λT − λ(t)
∣∣ → 0 as i → ∞ for each subinterval T of each refinement, which is what

was needed. We conclude that the sequence λ̂1(t), λ̂2(t), λ̂3(t), . . . converges pointwise

to λ(t) as i→∞.

By Theorems 1 and 2, above we see that as evidence accrues and the partition

mesh shrinks, our estimation of each piece of λ(t) approximates the original function

arbitrarily closely.
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4. Credible intervals for the mean rate

4.1. Adjusting credible intervals for non-unit interval lengths. After

inferring the estimator λ̂T for some interval T , we will often want to compute credible

intervals for our estimate. As mentioned in Subsection 2.7, we can use the inverse

CDF for the Gamma function to do this. However, the inverse CDF by itself will

produce the correct results only when |T | = 1. To find the bounds for the credible

interval for the estimated mean value of the intensity function λ(t), we must correct

the bounds by dividing by |T |.

4.2. An upper bound for the number of realizations needed for a

desired credible interval. While we have shown that λ̂T is a consistent estimator

of λT , we have not yet discussed how many realizations will need to be observed in

order to produce credible intervals of a needed size. Estimating this is beyond the

scope of this paper. Instead, we will use Chebyshev’s inequality to produce an upper

bound for the number of realizations required. As we saw in Section 1.6, Chebychev’s

inequality guarantees a credible interval no larger than
√

20 standard deviations from

the mean. Since the variance of the Gamma distribution is given by σ2 = α
β2 = λ

β
, we

see that σ =
√
λ√
β
.

We wish to ensure the error is less than some positive ε with a probability of

at least 0.95. Thus we need ε ≥
∣∣∣λ̂T − λT ∣∣∣ ≥ √20σ =

√
20
√
λ√

β
. Solving this equation
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for β we get

ε ≥
√

20λ√
β
⇐⇒

√
β√

20λ
≥ 1

ε
⇐⇒

√
β ≥

√
20λ

ε
⇐⇒ β ≥ 20

ε2
λ.

This formula gives an upper bound for the number of realizations of the process that

must be observed in order to guarantee the desired level of credibility. One feature

of the formula that should be noted is that the number of realizations scales linearly

with the mean rate of the process on the subinterval.

However, frequently we are more concerned with the amount of error as a

proportion, rather than a simple amount. For example, an error of
∣∣∣λ̂T − λ∣∣∣ = 1

might be seen as miniscule, even negligble, if λT = 5000 but unacceptably large if

λT = 5. Thus we may prefer to think in terms of the proportion of the error, making

ε a function of λ.

If so, we happily find that the number of required realizations decreases as λ

increases. If we set ε = λ
c

for some c > 1, we have

β ≥ 20

ε2
λ =

20

(λ/c)2λ =
20c2

λ2
λ =

20c2

λ
.

As a concrete example, consider the case of ε = λ/10, allowing a 10% error. Plugging

this into the formula above, we get β ≥ 2000
λ

. Thus for λ = 1, we may be required to

observe as many as 2000 realizations to reach the desired level of credence, while for

λ = 10, we will require at most 200.
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5. Examples of inference

In this section we consider some examples of using the process outlined in

Section 3. All examples are fictitious and used for illustrative purposes only.

5.1. Example 1. Alice’s Deli is currently open Monday through Friday be-

tween the hours of 11 am and 9 pm. The owner, Alice, is considering restricting

operation to lunch and dinner hours only in order to reduce operating costs. To aid

in determining the optimal hours in which to be open, Alice decides to estimate the

number of customers she receives during each hour of the day.

After some research, Alice decides to model the arrival of customers as a non-

homogeneous Poisson process. She also decides to use Bayesian inference in order to

better accommodate prior information available to her in the form of sales records,

using Gamma distribution priors. Having made these decisions, she keeps careful

track of the number of customers arriving over the course of a five-day work week.

Alice lets S = 10 be the length in hours of the relevant period (a single

working day) and chooses the partition P = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, with intervals

corresponding to each hour the restaurant is open. (Note that for statistical purposes

the time t = 0 corresponds to 11 am, while t = 10 corresponds to 9 pm.) After

perusing three weeks (fifteen days) of sales records, Alice selects the prior parameters

in Table 1 for each interval (note that the prior β is the same in every case because

15 days of data have been collected).
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Interval Prior α Prior β Prior Probability Distribution
(0, 1] 294 15 Gamma (α = 294, β = 15)
(1, 2] 550 15 Gamma (α = 550, β = 15)
(2, 3] 258 15 Gamma (α = 258, β = 15)
(3, 4] 66 15 Gamma (α = 66, β = 15)
(4, 5] 40 15 Gamma (α = 40, β = 15)
(5, 6] 175 15 Gamma (α = 175, β = 15)
(6, 7] 499 15 Gamma (α = 499, β = 15)
(7, 8] 686 15 Gamma (α = 686, β = 15)
(8, 9] 318 15 Gamma (α = 318, β = 15)
(9, 10] 140 15 Gamma (α = 140, β = 15)

Table 1. Example 1: Prior Probabilities

Alice’s experiment resulted in the data in Table 2. Alice then uses this infor-

mation to calculate the posterior according to Theorem 1 in Section 3. The results are

given in Table 3 and portrayed graphically in Figure 2, with µ denoting the expected

value of the prior or posterior, as appropriate. The credible intervals were computed

from the CDF with R.

With this information, Alice is able to now apply various techniques to deter-

mine the expected cost and benefit of operating at certain hours of the day. If for

instance, the cost of operation requires ten customers per hour on average to break

even, then it would almost certainly be beneficial to close during the intervals (3, 4]

and (4, 5], corresponding to 2pm to 3pm and 3pm to 4pm. In addition, it would

probably be beneficial to close an hour earlier, during the interval (9, 10] (or 8pm to

9pm), but we see that we cannot yet rule out the possibility that the rate during that

interval is 10 or greater, at least at a credible level of 0.95.

5.1.1. Accuracy of the Estimates. Suppose now that the true mean rates λ for

each interval are as in Table 4. The table also shows the error as a percent, calculated

as λ/|λ − µ|. As we have seen, if additional accuracy and confidence is needed, it

could be gained through gathering more data.
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# of Customers
Time Interval Mon Tues Wed Thurs Fri Totals
(0, 1] 21 18 29 19 18 105
(1, 2] 28 43 29 32 34 106
(2, 3] 21 21 19 19 17 97
(3, 4] 4 4 2 4 8 22
(4, 5] 0 1 2 4 1 8
(5, 6] 6 10 21 10 8 55
(6, 7] 24 34 36 42 42 178
(7, 8] 48 47 42 52 48 237
(8, 9] 20 22 17 17 16 92
(9, 10] 4 6 11 9 7 37

Table 2. Example 1: Total Arrivals by Hour

Interval n k Posterior µ Credible Interval (p = 0.95)
(0, 1] 105 5 Gamma(399, 20) 19.95 (18.04, 21.95)
(1, 2] 166 5 Gamma(716, 20) 35.80 (33.23, 38.57)
(2, 3] 97 5 Gamma(355, 20) 17.75 (15.95, 19.64)
(3, 4] 22 5 Gamma(88, 20) 4.40 (3.53, 5.37)
(4, 5] 8 5 Gamma(48, 20) 2.40 (1.77, 3.13)
(5, 6] 55 5 Gamma(230, 20) 11.50 (10.06, 13.03)
(6, 7] 178 5 Gamma(677, 20) 33.85 (31.35, 36.45)
(7, 8] 237 5 Gamma(923, 20) 46.15 (43.22, 49.17)
(8, 9] 92 5 Gamma(410, 20) 20.50 (18.56, 22.53)

(9, 10] 37 5 Gamma(177, 20) 8.85 (7.59, 10.20)

Table 3. Example 1: Posterior Probabilities

0 2 4 6 8 10
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10

20

30

40

50

FIG. 2. Example 1: Estimated means with error bars
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Interval [0, 1) (1, 2] (2, 3] (3, 4] (4, 5] (5, 6] (6, 7] (7, 8] (8, 9] (9, 10]

λ 20 36 17 5 3 12 32 45 22 8
µ 19.95 35.80 17.75 4.40 2.40 11.50 33.85 46.15 20.50 8.85∣∣λ− µ∣∣ 0.05 0.20 0.75 0.60 0.20 0.50 1.85 1.15 1.50 0.85

% Error 0.25 0.56 4.41 12 6.67 4.17 5.78 2.56 6.82 10.63

Table 4. Example 1: Accuracy of estimates

0 1 2 3 4

2

3

4

5

FIG. 3. Example 2: True Intensity Function

5.2. Example 2. Suppose an NHPP has a period length of 4 and the intensity

function λ(t) = 2 arctan(5t) + 2 cos(t) + 1. This function is pictured in Figure 3. We

observe 5 realizations of the process, yielding the set of arrivals in Table 5. We will

explore multiple ways to partition the data and the results obtained.

5.2.1. Hourly: P1 = {0, 1, 2, 3, 4}. Let the partition P1 = {0, 1, 2, 3, 4}. We

can calculate that the true mean values for each interval are given approximately in

Table 6. On the five realizations, the number of arrivals in each subinterval of the

partition is shown is Table 7. Using the inference technique from Theorem 1 with a

diffuse prior Gamma(1, 1) for each interval of the partition, we get the parameters in

Table 8. Figure 4 displays and contrasts (a) the true mean function λ(t) with (b) the

estimator function λ̂(t).
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0.008316505 0.057921384 0.082521686 0.133753605 0.182678425
0.241203225 0.264257218 0.275747027 0.289507543 0.337747490
0.337959160 0.388364928 0.460051573 0.531286455 0.584262207
0.586118157 0.619313083 0.642201824 0.672972928 0.692396975
0.756105268 0.768330402 0.805124826 0.811005894 0.836802410
0.854745691 0.858150426 0.868232123 1.024238145 1.087531347
1.146256671 1.182951448 1.242949557 1.270897330 1.273996290
1.325691394 1.344078714 1.466342488 1.483802438 1.559800381
1.741699974 1.821997349 1.847895434 1.874128693 1.960376231
2.113724898 2.216344420 2.328607138 2.348401578 2.348995085
2.382247736 2.611295646 2.734642469 2.781271486 2.872947194
2.972900378 3.037728378 3.042038019 3.056092888 3.092219570
3.195661224 3.242381787 3.399784693 3.571915606 3.696918089
3.717317319 3.868671239 3.973580122 3.993450447

Table 5. Example 2: Arrivals

Interval λ(t)
(0, 1] 4.778124
(1, 2] 4.001957
(2, 3] 2.443421
(3, 4] 2.230804

Table 6. Example 2: Hourly Means

0 1 2 3 4

2

4

6

λ(t)

λ(t)

(a) True

0 1 2 3 4

2

4

6

λ(t)

λ̂(t)

(b) Estimated

FIG. 4. Example 2: Hourly Means
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Interval Arrivals
(0, 1] 28
(1, 2] 17
(2, 3] 11
(3, 4] 13

Table 7. Example 2: Hourly Arrivals

Interval Posterior α Posterior β µ Credible Interval
(0, 1] 29 6 4.833333 (3.236959, 6.744633)
(1, 2] 18 6 3.000000 (1.777990, 4.536441)
(2, 3] 12 6 2.000000 (1.033429, 3.280340)
(3, 4] 14 6 2.333333 (1.275655, 3.705066)

Table 8. Example 2: Hourly Posteriors

5.2.2. Every quarter hour. Define the partition

P2 = {0.00, 0.25, 0.50, . . . , 3.50, 3.75, 4.00}.

This partitions the period into intervals of 15 minutes. Then the true mean values are

given approximately in Table 9, and the number of arrivals observed in the experiment

on each interval are given in Table 10. We use Bayesian inference as per Theorem 1

to estimate the means, and the estimations are given in Table 11. Finally, Figure 5

displays the true means and estimated means graphically.

5.2.3. 10000 realizations. For this section we generated 10000 realizations in

order to demonstrate the effect of reducing the size of the partition. The results can

be seen in Figure 6. We can see from the figure the effect of decreasing the length of

the partition subintervals from (a) 1 hour each to (b) 15 minutes each, (c) 10 minutes

each, and (c) 5 minutes.
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Interval λ(t)
(0, 0.25] 4.018556

(0.25, 0.50] 4.993207
(0.50, 0.75] 5.132744
(0.75, 1.00] 4.967990
(1.00, 1.25] 4.648438
(1.25, 1.50] 4.240020
(1.50, 1.75] 3.788125
(1.75, 2.00] 3.331245
(2.00, 2.25] 2.903903
(2.25, 2.50] 2.536606
(2.50, 2.75] 2.254902
(2.75, 3.00] 2.078271
(3.00, 3.25] 2.019178
(3.25, 3.50] 2.082454
(3.50, 3.75] 2.265091
(3.75, 4.00] 2.556493

Table 9. Example 2: True means (Quarter hourly)

Interval Arrivals
(0, 0.25] 6

(0.25, 0.50] 7
(0.50, 0.75] 7
(0.75, 1.00] 8
(1.00, 1.25] 5
(1.25, 1.50] 6
(1.50, 1.75] 2
(1.75, 2.00] 4
(2.00, 2.25] 2
(2.25, 2.50] 4
(2.50, 2.75] 2
(2.75, 3.00] 3
(3.00, 3.25] 6
(3.25, 3.50] 1
(3.50, 3.75] 3
(3.75, 4.00] 3

Table 10. Example 2: Arrivals (Quarter hourly)
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Interval Posterior α Posterior β µ Credible Interval (p = 0.95)
(0.00, 0.25] 7 6 4.6666667 (1.8762420, 8.7063160)
(0.25, 0.50] 8 6 5.3333333 (2.3025548, 9.6151169)
(0.50, 0.75] 8 6 5.3333333 (2.3025548, 9.6151169)
(0.75, 1.00] 9 6 6.0000000 (2.7435821, 10.5087928)
(1.00, 1.25] 6 6 4.0000000 (1.4679295, 7.7788881)
(1.25, 1.50] 7 6 4.6666667 (1.8762420, 8.7063160)
(1.50, 1.75] 3 6 2.0000000 (0.4124481, 4.8164584)
(1.75, 2.00] 5 6 3.3333333 (1.0823243, 6.8277258)
(2.00, 2.25] 3 6 2.0000000 (0.4124481, 4.8164584)
(2.25, 2.50] 5 6 3.3333333 (1.0823243, 6.8277258)
(2.50, 2.75] 3 6 2.0000000 (0.4124481, 4.8164584)
(2.75, 3.00] 4 6 2.6666667 (0.7265769, 5.8448487
(3.00, 3.25] 7 6 4.6666667 (1.8762420, 8.7063160)
(3.25, 3.50] 2 6 1.3333333 (0.1614729, 3.7144289)
(3.50, 3.75] 4 6 2.6666667 (0.7265769, 5.8448487)
(3.75, 4.00] 4 6 2.6666667 (0.7265769, 5.8448487)

Table 11. Example 2: Posteriors (Quarter hourly)
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(b) Estimated

FIG. 5. Example 2: Quarter hourly means
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FIG. 6. Example 2: Estimates inferred from 10000 simulated realizations
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6. Conclusion

In this paper we have shown that we are able to use Bayesian inference to

reconstruct the intensity function for a non-homogeneous Poisson process to any

desired resolution and degree of accuracy. This result requires the choice of a Gamma

distribution for the prior probability distribution, but it is indifferent to the choice

of initial parameters for the Gamma distribution. Using Chebyshev’s inequality we

set an upper bound for the number of realizations of the process we would need to

observe in order to established the needed accuracy and confidence.
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Appendix A. R Code

In this section we present algorithms and R code for simulating the process of

observing realizations of an NHPP and demonstrate the effectiveness of the approach

outlined in Section 3. The code is adapted from the algorithm in (Leemis, 1991).

Realization generation. First we will consider how to simulate the obser-

vation of a realization of an NHPP with a given intensity function λ(t) defined on

the interval [0, S]. Let Λ(t) =
∫ t

0
λ(τ) dτ be the cumulative intensity function (CIF),

and Λ−1(t) be the inverse of the CIF. After the algorithm is performed, N will be the

number of events occuring during the realization and Ei (1 ≤ i ≤ N) will be the time

of occurence of each event (not necessarily in order).

1. λ← Λ(S)

2. N ∼ Poisson
(
λ
)

3. For i← 1 to N :

1. Yi ∼ Uniform
(
0, λ
)

2. Ei ← Λ−1 (Yi)

The following code implements the above algorithm in the R language:

#’ Generate a random r e a l i z a t i o n from a g iven i n t e n s i t y

#’ func t i on

#’

#’ @param in t ens i t yFn I n t e n s i t y f unc t i on

#’ @param l eng t hO fRea l i z a t i on Length o f a s i n g l e per iod .

#’
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#’ @return Data frame o f even t s

g e n e r a t e R e a l i z a t i o n <− function (

intens i tyFn ,

l engthOfRea l i za t i on ,

. . . ,

i n t e g r a t i o n S u b d i v i s i o n s = 100L

) {

v i f <− Vecto r i z e ( in t ens i tyFn )

# In t e g r a t e the i n t e n s i t y f unc t i on to ge t the cumula t ive

# i n t e n s i t y f unc t i on

c i f <− function ( t ) {

r e s u l t <− i n t e g r a t e ( v i f , 0 , t ,

s u b d i v i s i o n s=i n t e g r a t i o n S u b d i v i s i o n s )

return ( r e s u l t $value )

}

# Find the expec ted ra t e o f even t s across the en t i r e

# r e a l i z a t i o n

r a t e <− c i f ( l eng thOfRea l i z a t i on )

# Take the in v e r s e o f the cumula t ive i n t e n s i t y f unc t i on

c i f . inv <− Vecto r i z e ( inverse ( c i f , 0 , r a t e ) )

# Generate a r e a l i z a t i o n

numEvents <− rpois (1 , r a t e )
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yValues <− runif ( numEvents , 0 , r a t e )

events <− c i f . inv ( yValues )

return (data . frame ( t = events ) )

}

Inference of intensity function. The folllowing R code implements the

inference of the posterior:

#’ In f e r the i n t e n s i t y f unc t i on o f a non−homogeneous

#’ Poisson proces s .

#’

#’ @param even t s l i s t o f time o f event occurences on the

#’ proces s

#’ @param numReal izat ions number o f r e a l i z a t i o n s observed

#’ @param pa r t i t i o n

#’ @param pr i o rS ca l e s

#’ @param pr iorRates

#’ @param con f i denceLeve l

#’

#’ @return data frame with e s t ima t e s

#’

i n f e r I n t e n s i t y <− function (

events ,

numReal izations ,

p a r t i t i o n ,

p r i o r S c a l e s ,

pr iorRates ,
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. . . ,

c on f i d enceLeve l = 0 . 05 )

{

numIntervals <− length ( p a r t i t i o n ) − 1

in t e rva lLeng th s <− t a i l ( p a r t i t i o n , numIntervals ) −

head ( p a r t i t i o n , numIntervals )

i n t e rva lEven t s <− sp l i t ( events , cut ( events , p a r t i t i o n ) )

i n t e rva lEven t s . counts <− l eng th s ( i n t e rva lEven t s )

i n t e r v a l S c a l e s <− i n t e rva lEven t s . counts + p r i o r S c a l e s

i n t e r v a l R a t e s <− pr io rRate s + numReal izat ions

i n t e r v a l E s t i m a t e s <− ( ( i n t e r v a l S c a l e s / i n t e r v a l R a t e s )

/ i n t e rva lLeng th s )

q lower <− qgamma( con f i d enceLeve l / 2 , i n t e r v a l S c a l e s ,

i n t e r v a l R a t e s ) / i n t e rva lLeng th s

q upper <− qgamma(1 − ( con f i denceLeve l / 2) ,

i n t e r v a l S c a l e s , i n t e r v a l R a t e s ) / i n t e rva lLeng th s

i n t e r v a l s <− data . frame ( scale = i n t e r v a l S c a l e s ,

r a t e = inte rva lRate s ,

mean = inte rva lEs t imate s ,

lower = q lower ,
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upper = q upper )

return ( i n t e r v a l s )

}
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Çınlar, E. (1975). Introduction to stochastic processes. Prentice-Hall.

Donovan, T., & Mickey, R. (2019). Bayesian statistics for beginners: A step-by-step

approach. Oxford University Press.
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