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ABSTRACT 
 

 
This thesis aimed to evaluate three methods of analyzing blue roofing tarpaulin 

(tarp) placed on homes in post natural disaster zones with remote sensing techniques by 

assessing the different methods- image segmentation, machine learning (ML), and 

supervised classification. One can determine which is the most efficient and accurate way 

of detecting blue tarps. The concept here was that using the most efficient and accurate 

way to locate blue tarps can aid federal, state, and local emergency management (EM) 

operations and homeowners. In the wake of a natural disaster such as a tornado, 

hurricane, thunderstorm, or similar weather events, roofs are the most likely to be 

damaged (Esri Events., 2019). Severe roof damage needs to be mitigated as fast as 

possible: which in the United States is often done at no cost by the Federal Emergency 

Management Agency (FEMA). 

 This research aimed to find the most efficient and accurate way of detecting blue 

tarps with three different remote sensing practices. The first method, image segmentation, 

separates parts of a whole image into smaller areas or categories that correspond to 

distinct items or parts of objects. Each pixel in a remotely sensed image is then classified 

into categories set by the user. A successful segmentation will result when pixels in the 

same category have comparable multivariate, grayscale values and form a linked area, 

whereas nearby pixels in other categories have distinct values. Machine Learning, ML, a 

second method, is a technique that processes data depending on many layers for feature 
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identification and pattern recognition. ArcGIS Pro mapping software processes data with 

ML classification methods to classify remote sensing imagery. Deep learning models 

may be used to recognize objects, classify images, and in this example, classify pixels. 

The resultant model definition file or deep learning software package is used to run the 

inference geoprocessing tools to extract particular item positions, categorize or label the 

objects, or classify the pixels in the picture. Finally, supervised classification is based on 

a system in which a user picks sample pixel in an image that are indicative of certain 

classes and then tells image-processing software to categorize the other pixels in the 

picture using these training sites as references. To group pixels together, the user also 

specifies the limits for how similar they must be. The number of classifications into 

which the image is categorized is likewise determined by the user. 

The importance of tracking blue roofs is multifaceted. Structures with roof 

damage from natural disasters face many immediate dangers, such as further water and 

wind damage. These communities are at a critical moment as responding to the damage 

efficiently and effectively should occur in the immediate aftermath of a disaster. In part 

due to strategies such as FEMA and the United States Army Corps of Engineers’ 

(USACE) Operation Blue Roof, most often blue tarpaulins are installed on structures to 

prevent further damage caused by wind and rain. From a Unmanned Arial Vehicles 

(UAV) perspective, these blue tarps stand out amid the downed trees, devastated 

infrastructure, and other debris that will populate the area. Understanding that recovery 

can be one of the most important stages of Emergency Management, testing techniques 
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for speed, accuracy, and effectiveness will assist in creating more effective Emergency 

Management (EM) specialists.
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INTRODUCTION 

 

 The idea of analyzing blue roofing tarps with different methods was conceived 

while doing personal drone (or unmanned aerial vehicles, UAV) flights over a local 

neighborhood that had been damaged by an EF4 tornado a month prior. From above, the 

feature that most clearly stood out was the blue tarps that had been put up over damaged 

homes. While on the ground it was hard to see the full scope of damage done to the area, 

from the sky, the large number of homes affected was astounding.  

Tornadoes in the United States are measured based on the Enhanced Fujita Scale, 

or EF Scale, it is used to give a tornado a “rating” based on the apparent sustained winds 

and damage. Damage from tornadoes is contrasted to a list of Damage Indicators (DIs) 

and Degrees of Damage (DoD), which help determine the tornado's expected wind speed 

range. After that, a score (from EF0 to EF5) might be issued. For example, an EF2 

tornado can have winds reach speeds of around 111-135 mph and is classified as 

“Significant” (US Department of Commerce, 2016). When examining damaged 

structures, a land-based perspective can only offer so much information, as a person is 

only able to perceive from one vantage point. However, when using an UAV, a complete 

picture of the damage and devastation done to structures can be clearly mapped. 

As mentioned in the abstract of this research, the Federal Emergency 

Management Agency (FEMA) supplies impacted communities with many resources, such 

as blue tarps to protect homes. Through Operation Blue Roof, a program started in 2017, 
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the UASCE installs temporary plastic blue tarps to help reduce further damage to eligible 

properties. This can help in decreasing water damage and in some cases make homes 

habitable during repairs. While the ACE processes and plans out blue tarp installations 

using a geographic information system (GIS) (Army Corps of Engineers n.d.), no follow-

up work has been done to track and analyze the locations of the tarps installed by 

Operation Blue Roof. Remote sensing techniques such as image segmentation, ML, and 

supervised classification can be beneficial to helping measure the impact a disaster has on 

a community. This research aimed to find the most accurate remote sensing tool to track 

blue roofs and determine which one can do so most accurately in the most efficient 

amount of time for resources at a disaster site. Recognizing that recovery is one of the 

most critical stages of EM, evaluating strategies for speed, accuracy, and effectiveness 

will aid in the development of more effective EM professionals’ responses. 
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CHAPTER ONE 

 

LITERATURE REVIEW 

 

IMAGE SEGMENTATION 

 
Using image segmentation, a study in Fuzhou, China aimed to monitor beach 

trash in data collected by UAVs (Bao et al., 2018). The results of the data analysis 

demonstrated that by utilizing remote sensing and GIS technology, optical pictures 

captured by sensors on a UAV may be used to identify and monitor beach trash. The 

UAV image in the beach region may be successfully segmented using the threshold 

approach. The researchers found that this method assisted in providing efficient technical 

support for the investigation and assessment of coastal beach litter by promptly 

monitoring the distribution of beach litter in the region of interest (Bao et al., 2018). This 

project serves as a great example of how to apply image segmentation techniques when 

identifying a determined object against other objects.  

When it comes to mapping forest cover and identifying deforestation polygons in 

multitemporal satellite data, a recent research project was carried out to see how well the 

U-Net architecture performs (Bragagnolo et al., 2021). To this aim, footage from the 

Sentinel-2 satellite with a resolution of ten meters was used, which covered parts of the 

Amazon. With high accuracy (0.9470), precision (0.9356), recall (0.9676), and F1-score 
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(0.9513), the U-Net was able to recognize and draw polygons of forest regions and forest 

fragments. This surpassed more widely used and well-known supervised and 

unsupervised image classification techniques (Bragagnolo et al., 2021). The findings 

suggested that U-Nets have the potential to serve as the backbone for effective forest 

cover change monitoring programs and to aid the implementation of near real-time 

deforestation warning systems. 

One important issue in the field of intelligent analysis of remote sensing pictures 

is semantic segmentation. Due to its strong semantic feature representation, the deep 

convolutional neural network (DCNN) has become a standard technique in semantic 

segmentation. The creation of high-resolution remote sensing photography has supplied 

large amounts of detailed information. However, there are still issues, which is something 

that a research paper from 2021 aimed to examine (Chen et al., 2021). The authors aimed 

to examine the differentiating characteristics of geo-object information and offered a new 

DCNN-based semantic segmentation method. For them to determine the relationship 

between distinct channels or locations, a cascaded relation attention module was used 

first. The characteristics of geo-object details were then captured and fused via 

information connection and error correction. The multiscale feature module provided the 

output feature representations. The proposed model employed boundary affinity loss to 

get a precise and distinct geo-object border. The experimental findings on the Potsdam 

and Vaihingen data sets showed that the proposed model can achieve good overall 

accuracy and mean intersection over union segmentation performance (Chen et al., 2021). 
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MACHINE LEARNING  

 
In GIS and remote sensing fields, machine learning has long been seen as a key 

component of spatial analysis if it is bit complex. The tools and methods have been used 

to tackle issues in three different areas using geoprocessing technologies. Data processors 

can use vector machine methods to construct land cover classification layers using 

grouping. Clustering, which permits users to analyze massive amounts of input point 

data, allows for the discovery of significant clusters within them and separates them from 

the sparse noise. Users can represent regionally changing connections using prediction 

techniques like geographically weighted regression. Data-driven algorithms and 

approaches that automate data prediction, classification, and clustering are referred to as 

machine learning (ML). ML is computationally expensive and frequently includes large, 

complicated data sets. Despite this, it may help solve spatial problems in a variety of 

applications, including multivariate prediction, picture classification, and spatial pattern 

recognition. In the project being proposed, ML will be used to detect blue roofing tarps 

on buildings and structures that are located in post disaster communities.  

A paper published in 2021 (Avand, Moradi, and Lasboyee, 2021) used machine 

learning modes to look at the impact of climate change on future flood risk. The 

researchers wanted to examine how climate and land use changes in Iran's Tajan 

watershed impact flood susceptibility. To accomplish this, the land change modeler 

(LCM) technique was used to forecast land use changes from 2019 to 2040 based on 
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land-use changes during the previous 29 years (Avand, Moradi, and Lasboyee, 2021). 

Future climate change was estimated for the next 20 using LARS-WG software and two 

scenarios, RCP2.6 and RCP8.5, based on climatic data from 1990 to 2015 (Avand, 

Moradi, and Lasboyee, 2021). The geographical distribution of flood vulnerability in the 

watershed was modeled using 12 variables that impact flooding and 262 sites of historical 

floods. To forecast flood-prone regions, researchers utilized a random forest (RF) model 

and a Bayesian generalized linear model (GLMbayes) (Avand, Moradi, and Lasboyee, 

2021).  

The findings of the models revealed that the most important elements impacting 

floods in this basin are elevation, distance from the river, land use, slope, and rainfall 

(Avand, Moradi, and Lasboyee, 2021). The variables were adjusted to account for 

changes in land use and climate, and the models were then transposed. Land use and 

climate forecasts in this region show that land-use change, such as reduced forest cover 

and reduced rangeland along rivers and downstream, is likely, and rainfall is predicted to 

rise. With these models, they found that flooding would be more likely in the downstream 

section of the watershed and near the sea as a result of these changes. The random forest 

model predicted flood probability more correctly than the GLMbayes model. 

Another use of ML was performed in landslide susceptibility assessments that in 

the past have been done with GIS but are now looking for areas of improvement. While 

there has been the occasional study to have looked into this, few have had such a 

systematic approach to ML as a study out of Taiwan (Lai and Tsai, 2019). Here they used 
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ML to establish a systematic strategy for multitemporal and event-based landslide 

susceptibility evaluations at a regional scale using satellite remote sensing pictures, GIS 

data sets, and spatial analysis. The landslide susceptibility models were built using the RF 

technique. In the trials, different ratios of landslide and non-landslide samples were used. 

The researchers then utilized a cost-sensitive strategy to adjust the decision boundary of 

the developed RF models with unbalanced sample ratios to improve the prediction 

results. They used two strategies for model verification: space- and time-robustness. The 

investigations found that the proposed approach may yield more realistic models, with 

accuracies of more than 93% and 75% in most cases for space- and time-robustness 

validations, respectively. Furthermore, the mapping findings indicated that the sample 

ratios used in the studies did not affect the multi-temporal models (Lai and Tsai, 2019). 

As evidenced by the findings of a publication (Jia et al., 2019), advances in 

machine learning and the availability of earth-observing satellite data can significantly 

boost people's monitoring capabilities. They found that ML has great potential, but much 

progress is still required to achieve its full capacity. Machine learning algorithms are 

beginning to show promise in identifying temporal patterns to produce pixel-level maps 

of crops; these approaches were intended for remote sensing data that is accessed 

regularly. However, because such data has a low spatial resolution, it is ill-suited for 

monitoring small-scale farms, which is one of the more common uses in most regions of 

the world. As such, using data that is higher resolution such- as that produced via UASs 

might show greater results.   
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SUPERVISED CLASSIFICATION 

Supervised classification is one of the most common approaches for quantitative 

analysis of remote sensing images. The notion of segmenting the spectral domain into 

areas that may be linked with the ground cover classes of relevance to a certain 

application lies at the heart of it. In practice, these areas may cross at times. A study from 

2021 (Wang et al., 2021) applied supervised classification in analyzing the effects of 

lodging on maize crops. The ability to identify lodging is useful for estimating losses 

from natural catastrophes, screening lodging-resistant crop varieties, and optimizing 

field-management techniques. The precise detection of crop lodging is inextricably linked 

to the exact measurement of the degree of lodging, which aids in crop production field 

management. To accomplish the study’s goal of measuring the degree of lodging with 

high precision, a method was created that combines supervised and object-oriented 

classifications on the spectrum, texture, and canopy structure data (Wang et al., 2021). 

Wang (Wang et al., 2021) and the other researchers’ findings revealed that the 

object-oriented classification approach utilizing random forest classifiers had the best 

overall accuracy of 86% when coupled with the original picture, the modification of the 

digital surface model, and texture characteristics. The best-supervised categorization of 

the degree of maize lodging at the pixel level was 78% (Wang et al., 2021). This study 

examined how feature variables impact the degree of lodging by looking at the 

geographical distribution of the degree of lodging as a function of crop type, sowing date, 

density, and various nitrogen treatments. These findings enabled them to quickly assess 
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the degree of lodging in field maize, as well as establish the best sowing date, density, 

and fertilization strategy for field production. Although the samples were relatively 

independent of one another when using the supervised classification method to classify 

the degree of maize lodging, the low discrimination of lodging maize on the pixel scale 

translated to a large number of nongreen parts in the sample area, leading to 

misclassification at the pixel level(Wang et al., 2021). They found that removing tiny 

areas did not enhance classification scores significantly. Furthermore, supervised 

classification has low classification accuracy; thus supervised classification methods used 

to high-resolution pictures with considerable variations in category structure and 

comparable color are only acceptable for broad classification schemes . 

Supervised classification is also used in much more large-scale imagery 

processing, such as detecting land cover changes. A study used this technique to monitor 

and cover changes in the Bosomtwe Range Forest Reserve of Ghana from 1991, 2002, 

and 2017 based on  satellite imagery (Mensah et al., 2019). To detect land use and land 

cover changes in the reserve, this study used supervised classification with the maximum 

likelihood technique in Quantum GIS. The maximum likelihood method is a commonly 

used statistical sampling-based classification technique that assigns pixels to a specified 

set of land cover classes using the probability density function. Overall, 72% of the 

classifications were correct, with a kappa value of 59% (Mensah et al., 2019). According 

to the findings of this research and their use of supervised classification, land use and 

cover in the reserve changed dramatically. 
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The use of UAVs and supervised classification are two concepts that work 

together in a symbiotic relationship. In a project conducted in 2016, a study of the 

accuracy of free and open-source methods employed in the geographical object-based 

image categorization (GEOBIA) of VHR images surveyed by UAVs investigated the 

rising potential (Heuschmidt et al., 2020). At two separate times during the year, UAV 

surveys were conducted in a cork oak woodland in central Portugal. A high spatial 

resolution picture mosaic was used to evaluate the two supervised classification methods: 

pixel-based and object-based image analysis (OBIA). A UAV with an RGB camera 

collected the data. Cork oak, bushes, grass, and other plants were identified as four 

distinct vegetation types (bare soil and tree shadow). The results were compared to data 

collected in the field using the point-intercept (PI) technique (Heuschmidt et al., 2020). In 

cork oak woods, data comparison demonstrated the accuracy of aerial imaging 

categorization systems. Testing the two different methods of supervised classification 

revealed that cork oak was correctly identified 82.7% percent of the time using the pixel-

based approach and 79.5%   of the time using OBIA. They found that the OBIA correctly 

recognized 97.6%  percent of bushes, but the pixel method overestimated 22.7%. With 

OBIA, the grass was overestimated by 21.7%, while with the pixel-based approach, it 

overestimated by 12%. With this, they (Heuschmidt et al., 2020) determined that the use 

of only spectral information in the visible range has clear limitations. It can be surmised 

that as a result, more studies using other bands might lead to a better categorization of 

land cover types. 
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UNMANNED AERIAL SYSTEMS REMOTE SENSING FOCUSING ON URBAN 

AREAS 

 As of 2020, cities and urban areas accounted for 82.66% percent of the total 

population of the United States’ areas of living (O'Neill, 2021). As the U.S and countries 

around the world become more and more urbanized, it is important to consider this 

change when analyzing communities post disaster. Aerial data from an urban 

neighborhood differs significantly from that of a rural one. It's also probable that the sort 

of damage detected will be fairly different. Both of these factors result in unique remote 

sensing experiences and processing. The challenge of merging these techniques and 

technologies is something that has been looked at in a limited number of studies.  

 Such a study is one published in 2020 in the Geoenvironmental Disasters journal 

that aimed to demonstrate how several UAV platforms capturing pictures at the same 

time may produce real 4D or 3D models of geoprocesses; such as riverbed development, 

rockfalls, and similar events (Gomez et al., 2016). They saw that UAVs are mostly used 

for mapping geographical characteristics and their evolution over time, mapping risks and 

catastrophes as they occur, observing human behavior during an emergency or disaster, 

replacing communications systems damaged by natural disasters, and transporting goods 

to isolated populations. This study explained that although UAV technology has only 

been on the market for a few years, its already low cost and widespread availability are 

expected to accelerate its rapid expansion, allowing communities and emergency services 

to use this tool in disaster areas, rather than being limited to scientific use. They focused 
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on examining the use of UAV applications to three of the most serious geo-hazards: 

earthquakes, volcanic activity, and landslides. These three examples have highlighted the 

link between survey scales (time and space) and phenomenon scales. The study suggested 

that the usage of UAV is limited by the predictability and length of occurrences (Gomez 

et al., 2016). Because earthquakes are very unexpected in terms of time, it has been 

utilized in the aftermath of earthquakes for emergency management purposes. It has been 

used in both emergency management, hazards, and risk monitoring on volcanoes since 

volcanic eruptions are far more predictable and last for longer periods, allowing for the 

deployment of one to several flights during their active period. Landslides are often 

slower-onset occurrences, allowing scientists to conduct repeat flights over months or 

years to observe the evolution of the landslide surfaces. 

 A study from Canada evaluated pre-disaster 3-D data correctness in terms of 

geographic accuracy and building depiction. This was to provide a case study of 

developing a pre-disaster 3-D map of downtown Victoria, British Columbia, Canada, 

utilizing drone-based data (Kucharczyk and Hugenholtz, 2019). The photographs were 

taken with a fixed-wing drone equipped with real-time and post-processed kinematic 

capabilities. Although the drone's spatial accuracies allow sub-meter building collapse 

identification, their non-gimbaled camera was unsatisfactory for recording building 

facades. When used for building assessment with drone-derived 3-D textured meshes, it 

was discovered that a high-resolution mesh, with up to 96% more vertices and faces than 

a moderate mesh, visually improved design geometry and texture, especially for 
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historical buildings with complex geometries and small architectural features. However, 

both mesh resolutions were unable to cope with large point cloud gaps on facades. The 

model's data gaps were discovered to be linked to significantly distorted building 

geometry and texturing.  As a result, alternative technology will be necessary for future 

drone-based pre-and post-disaster 3-D mapping of towns. When it comes to recreating 

building facades, the capacity to acquire extremely oblique pictures is critical. A multi-

rotor drone with a gimbaled camera is one option. However, due to regulatory 

constraints, lightweight multi-rotor drones may be more difficult to use for large-area 

mapping missions in big cities in the near future. As a result, they recommend doing 

follow-up research with a fixed-wing drone equipped with oblique image acquisition 

capabilities (Kucharczyk and Hugenholtz, 2019).  

 To respond quickly and correctly to hydrometeorological risks, it is important to 

estimate the damage to the affected region. This is typically accomplished by conducting 

time-consuming reconnaissance visits to gather extensive field data. By comparing pre-

and post-event data, a paper published in Geomatics, Natural Hazards and Risk proposes 

a methodology for rapid urban flood damage assessment and estimation of the number of 

houses washed away, or with a total or partial roof collapse, using  

i) High-resolution satellite and RGB images from unmanned aerial vehicles  

(UAV) 

ii) Digital elevation models (DEM) 

iii) Object-based image analysis (OBIA) (Jiménez-Jiménez et al., 2020). 
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The findings show that the three-pronged strategy described here may distinguish 

between changes before and after an incident and enhance picture categorization of 

washed-away or damaged buildings. The suggested automated categorization derived 

using UAV data has an overall accuracy of 97.4% and the Kappa coefficient was 0.954. 

This research, however, did not look at structural damage that may have been caused. 

The team determined that if UAV data is available, the methodology can be implemented 

in one of three ways: 

i) Using before (satellite) and after (UAV) image information 

ii) A GIS vector of houses obtained from census information 

iii) Analysis of changes between the GIS vector and the classification (Jiménez-

Jiménez et al., 2020). 
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CHAPTER TWO 

 

METHODOLOGY 

 
The research proposed here took place across four different stages. Errors and 

complications that took place, especially during Stage Three, were recorded. The first 

part was data collection from areas that experienced a disaster causing roof structure 

damage. UAS has more small-scale commercial uses than satellite photos, which have 

more large-scale scientific applications. The relationships between components of 

landscapes are difficult to notice from the ground using aerial images. Drones, which fly 

closer to the ground than satellites, give a comprehensive and high-resolution perspective 

from above, revealing previously overlooked details or uncovering hidden relationships. 

For most personal or commercial needs, aerial photography is still a superior option to 

satellite images. Because many accessible satellite maps are often more than a year old 

and most do not represent recent changes or advancements, UAS is less expensive and, in 

some situations, more up-to-date. Individuals and small businesses may hire a licensed 

UAV operator more readily and have greater control over the process. The resolution and 

clarity of the photos will likely be improved as well, making them easier to grasp and 

obviating the need for additional analysis. It is for all these reasons that UAV imagery 

was collected and used for research.  
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For the purpose of repeatability, and ease of use as well as accessibility, all data 

was processed in Environmental Systems Research Institute’s (ERSI) ArcPro and 

Drone2Map. This software is both easy to use and a standard across the field of both 

geography and emergency management for its data processing uses.  

  

 

 

Table 1. Depicting the workflow of data from start to finish. 

COLLECTION OF UNMANNED AERIAL VEHICLE DATA 

 
The data will be of communities that experienced a disaster that caused roof 

damage. It will be best to collect within a few weeks of the disaster occurring, but this 

was not necessary. The reasoning behind this is that blue tarps should be placed on 

structures as soon as safely possible in order to prevent further damage, and in many 

cases can make homes habitable once more. Data collection immediately following a 

disaster is unsafe both to the UAV operators and those around them. The FAA has 
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advised drone operators that using an unlawful drone might disrupt local, state, and 

federal rescue and recovery operations. Without authorization, flying a drone in or near a 

disaster zone might be a violation of federal, state, or local laws and ordinances. 

Allowing first responders to rescue lives and property without being hampered in their 

efforts is of higher priority. 

When safe and legal to operate the UAV in the chosen disaster site, the data was 

be collected. The UAV was flown at an AGL (above ground level) of 150 feet. It was 

proposed that the Jacksonville State University Department of Chemistry and 

Geosciences’ DJI Phantom 4 drone would used in the collection. This UAV represents a 

good entry point for EMAs looking to get into the UAV side of disaster management. 

Emergency Management Agencys or EMAs, are municipal, tribal, state, 

national institutes in charge of thoroughly planning for, reacting to, and recovering from 

all types of catastrophes, both man-made and natural. It is most common for local EMAs 

to be the first to respond to disasters and the last to leave disasters sites. While grants and 

federal funding are available to these local smaller scale organizations, drones can pose 

an expensive barrier in both technology and training cost. 
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Sensor 1/2.3” CMOS 

Effective pixels:12.4 M 

Lens FOV 94° 20 mm (35 mm 

format equivalent) f/2.8 

focus at ∞ 

ISO Range 100-1600 (photo) 

Mechanical Shutter 

Speed 

8 - 1/8000 s 

Photo  JPEG, DNG (RAW) 

Image Size 4000×3000 

Table 2. Key DJI Phantom 4 technical specifications.( DJI Official., n.d.) 

While the flights can be flown manually, to keep a standardized approach to each 

site, Pix4D Capture App was used in assistance. This application allows for the flights to 

be planned before going out into the field and the UAV to fly itself while the pilot 

maintains a visual line of sight (VLOS) and obeys all FAA UAV regulations. Overlap of 

the imagery collected will be 70% to ensure smooth orthomosaicing. 
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DATA PREPROCESSING 

 
Once the data was collected and stored, it will be processed using Esri’s 

Drone2Map application. Individual, overlapping picture frames captured by drones were 

processed to provide orthorectified images, digital surface models (DSMs) and digital 

terrain models (DTMs), point clouds, and textured meshes, among other 2D and 3D 

outputs. For the study, only orthorectified images were be needed. While this can be a 

costly application, its simplicity is what is important as many EMAs lack trained 

operators. Creating orthomosaics in this way is quite simple and a matter of adjusting 

settings to create the most complete picture. All three methods were tested in ArcGIS 

Pro, a software also operated by Esri. This was to keep all software under the same 

umbrella to keep things simple for those who have little to no experience in GIS. 
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Figure 1. 0.58 by 0.30-kilometer orthomosaic. 

 Processing in Drone2Map resulted in roughly 0.58 by 0.30-kilometer orthomosaic 

land cover area. The Average Ground Sampling Distance (GSD) or spatial resolution of 

this 1.21 cm per a pixel. The holes in the image are likely due to a lack of usable imagery 

as the weather at the time of collection was unexpectedly windy.  
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Figure 2. Drone2Map view site showing flight path and imagery points. 
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Figure 3. UAS failed to stitch areas or holes compared to ArcGIS Pro satellite images. 
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 Looking at the process report generated by Drone2Map the areas that holes and 

other errors occur in line with a lack of overlapping images. For each pixel of the 

orthomosaic, the number of overlapping pictures is determined. The red and yellow spots 

suggest low overlap, which might lead to unsatisfactory outcomes. For each pixel, green 

patches show an overlap of more than 5 photos. As long as the number of key point 

matches is adequate for these locations, good quality results will be provided. Figure 4 

shows how the holes seen in Figure 3 line up with the lack of overlapping images. Out of 

the 219 images collected, 213 where able to be calibrated for orthomosaicing, the missing 

6 images where disabled or uncalibrated images, which means they were likely taken at 

an angle of which was unusable for the software.  

 

 

Figure 4. Overlap report. 
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CHAPTER THREE 

 
TESTING METHODOLOGY 

 
IMAGE SEGMENTATION 

 
 The object-based categorization method relies heavily on segmentation. This 

method brought together pixels that are similar in hue and have comparable form 

properties, in this case, blue roofing tarps. These objects are made using an image 

segmentation technique that divides pixels into segments based on their proximity and 

spectral properties. Objects formed from segments with certain forms, spectral, and 

spatial properties. The items will then be classified into classes that correspond to real-

world ground characteristics, the classes proposed will be “blue roof” and “non-blue 

roof”.   

The object-oriented feature extraction technique is a workflow that includes tools 

for picture segmentation, segment derivation, and classification. The data from one tool is 

fed into the next, with the objective of creating a meaningful object-oriented feature class 

map.  
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Table 3. Workflow of image segmentation. 

Mean shift is a method used to segment the images. To select which pixels should 

be included in each segment, the method employs a moving window that produces an 

average pixel value. The value is continually recalculated as the window travels over the 

image to ensure that each segment is appropriate. As a consequence, picture pixels were 

grouped into a segment with an average color. Collecting training sample data entails 

identifying a collection of pixels that correspond to specific characteristics in a picture. 

After that, all of the pixels in the image were statistically compared to the class 

description that has been supplied, and a class was assigned. 
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Figure 5. Image showing classification following training samples. Blue Tarps (blue), 

Developed (pink), Barren (tan), Forest (green), Shrubland (brown), and Planted/ Cultivated 

(yellow). 
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Figure 6. Example of two areas that were falsely classified as blue tarp roofs. Left is 

planters on the front steps of a house.  Right is appearing to be the shadow on a cupola. 

Note the lack of a blue tarp. 

 

 

 



28 
 

  

Figure 7. Examples of correctly identified blue tarp on a roof. Note the shape of the area 

aligns with the typical roof structure and covers the whole area as well as the presence of 

the color blue. 
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Figure 8. Initial classification and post classification. Yellow areas are classified as a blue 

tarp. Bottom: red classified as blue tarps after removing falsely classified areas. 
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The final image only reveals blue tarps set on top of roofs after categorization and 

correction. Blue tarps account for 1286.128 pixels out of 156112.739 pixels, or 0.823% 

percent of the image. Before removing incorrectly classified objects, 2482.307 pixels 

total were classified as blue tarps, with the modify vertices tool 1196.178 of those could 

be removed.  

 

MACHINE LEARNING 

 
To test ML, there first needed to be training samples. This was done in ArcPro by 

creating training samples in the Deep Learning pane, which were then be converted to 

deep learning training data. To create an output, the analyst used the trained model to 

execute the Classify Pixel; if done correctly this will highlight areas that contain blue roof 

tarps. While this method might sound simple, it will likely take much trial and error to 

adjust the samples to get an accurate estimate of the tarp locations.  
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Table 4. Machine Learning Workflow outline. 

The training data was the initial stage in machine learning. “Export Training Data 

For Deep Learning” is a tool that uses a remote sensing picture to transform categorized 

vector or raster data into deep learning training datasets. The result was folder containing 

picture chips and a folder containing metadata files in the format provided. This program 

also generated training datasets for third-party deep learning programs. Deep learning 

class training images were based on picture chips, which are sub-images that include the 

feature or class of relevance. 
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Using the results from the Export Training Data for Deep Learning tool, the "train 

deep learning model" tool was utilized in this study. This tool uses deep learning 

frameworks to train a deep learning model. A deep learning framework for ArcGIS must 

be installed and put on to ArcPro to set up the machine to utilize deep learning 

frameworks in ArcGIS Pro. PyTorch is the suggested framework by ESRI but other third-

party deep learning frameworks do work here as well. This is a free download, that does 

not take much computing power to download and use. This tool may also be used to fine-

tune an already trained model in a close enough model that already exists. 

 

Figure 9. Illiterates the layout and input of data for the training of and exporting of ML 

data. 
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Figure 10. Loss graphs from ML. 

 
The purpose of the training algorithm was to find a decent match between an 

overfit and an underfit model. A training and validation decline that lowers to a point of 

stability with a limited difference between the two ultimate loss values is indicative of 

this. On the training dataset, the model's loss is usually always smaller than on the 

validation dataset. This implies that a difference between the training and testing data loss 

learning curves should be expected. The plot of training loss declines to a point of 

stability, whereas the plot of validation loss drops to a point of stability and has a tiny gap 

with the training loss, indicating a good match. In figure 10, these can be seen as a good 

fit after looking at the train and validated lines.  
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Figure 11. Ground Truth/ Predictions from ML. 

Following the training of the deep learning model, it was attempted to use the 

model to use to create an output to execute the Detect Objects Using Deep Learning, 

Classify Pixels Using Deep Learning, or Classify Objects Using Deep Learning tools. 
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After attempting to run, all of these haver failed to run and give a meaningful result or 

correctable error.  

 

SUPERVISED CLASSIFICATION  

 
 In keeping things simple, the Classification Wizard tool in ArcPro was used to do 

supervised classification. This interface walks users through a guided process that 

includes best practices and a streamlined user interface so that it is user-friendly and easy 

to follow. The accuracy of the outcome was determined by the training samples given. 

These sites can be generated or selected based on our human understanding of the source 

data and expected outcomes, and they are recorded as a point or polygon feature class 

with matching class names for each feature. The training samples' features were used to 

classify all other pixels in the picture. Classification in this project were done on a per-

pixel basis, with the spectral properties of each pixel determining which class it belongs 

to.  

Because a supervised classification was utilized, the classification's outcome is 

determined by the training samples provided. Training samples are illustrative sites for all 

of the categories that need to be classified, most notably blue tarps in this case. These 

sites are developed or selected based on user understanding of the source data and 

expected results, and they are saved as a point or polygon feature class with class label 
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names for each feature. The training samples' features are used to classify all other pixels 

in the image, which runs reasonably quickly because of the image size.  

 

Figure 12 . Supervised Classification. Blue Tarps (blue), Developed (pink), Barren (tan), 

Forest (green), Shrubland (brown), and Planted/Cultivated (yellow). 

This supervised classification resulted in the imagery highlighting blue tarps into 

their class, however, the edges of the raster and its groups are rough so a Boundary 

Cleaning Tool was applied twice. By smoothing the borders between zones, this tool 

normalizes or simplifies rasters. The tool allows for selecting how the cells in the input 

zones influence the flattening and how much smoothing is applied. Following this, the 

raster was turned into a polygon so that incorrectly classified objects such as trash bin 
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lids, windows, and pools could be removed. This resulted in a much clearer image 

showing the active blue traps on roofs.  

 

 

 

 

 
Figure 13 . Example of two areas that were falsely classified as blue tarp roofs. Left is a 

child's play area, Right is grey-blue toned shingles on the roof. Note the shape is different 

from than typical roof shape and the classification is spotty. 
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Figure 14. Correctly identified blue tarp on a roof via Supervised Classification. Note the 

shape of the area aligns with the typical roof structure and covers the whole area. 

After classification and correction were finished, the resulting image showed only 

blue traps placed on top of roofs. It is important to note that not all blue tarps from the 

first classification were onto roofs as some were over supplies, car windshields, tools, or 

placed otherwise. Out of 156112.715 pixels, 1212.287 can be classified as blue tarps or 

about 0.776% of the image. Before removing wrongly classified objects, 1602.351 pixels 

were classified as blue tarps, later 390.063 of those pixels had to be removed.  
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Figure 15 . Initial classification and post classification. Top: yellow areas are classified as 

a blue tarp. Bottom: red areas classified as blue tarps after removing falsely classified 

areas. 
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CHAPTER FOUR 

 

ACCURACY ASSESSMENT 

 
 Once all three methods were tested across each disaster site an accuracy 

assessment was run on the results to gauge the correctness of the classification of blue 

roofs. To assess the correctness of the categorized results a reference dataset was created 

using the classification wizard. This reference dataset's values must match the schema. 

The schema used is simply a reference to the objects being classified. It is a way for the 

program to recognize what is being classified and what is not. This reference data was put 

in raster format. The randomized equalized stratified technique was employed. This 

means that the program created a random distribution of points inside each class, with 

each class having the same number of points. These points will be what is used for future 

analysis of the sites that are desired to fit into the schema. Accuracy is measured on a 

scale of 0 to 1, with 1 representing perfect accuracy. This is done using the kappa 

statistic, which compares observed accuracy to expected accuracy. The greater the kappa 

number, the more closely two datasets agreed. High accuracy and kappa number will 

indicate a successful method of finding blue roofing tarps. For reference, should an 

accuracy analysis be done, and the accuracy fall somewhere below 0.5, this would mean 

that the accuracy of the image falls more than halfway below the expected, and would 
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need to be re-referenced. For the purposes of this image, a Kappa of 1 was successfully 

achieved. 

 

 

Table 5 . Confusion Matrix of Supervised and Segmentation Classification. 

As seen in Table 6, the after finishing an Accuracy Assessment on both the 

Classified Image and the Segmented Image, it can be possible to understand how accurate 

the information presented was compared to actual physical locations (in this case, 

Newnan, GA). Geo-referencing is possible, but is time-consuming and instead achievable 

by using tools in modern geospatial programs. For this data, the Kappa value for both of 

these images was 1. This result was due to the fact that the data used to classify these 

images was properly georeferenced, allowing for accurate use of the data and properly 

located classifications. 
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The accuracy column displays false positives, or omission mistakes, in which 

pixels are wrongly classified as a recognized class when they should be classed as 

something else, in this case blue tarps placed on roofs. Mistakes of omission, or type 1 

errors, are often referred to as user accuracy. The data used to calculate this error rate was 

taken from the table's rows. According to the reference data, the Total row reflects the 

amount of points that should have been categorized as a certain class. The accuracy 

column displays false negatives or commission mistakes. The data used to calculate this 

error rate is read from the table's columns. The Total column corresponds to the number 

of points that were classified as belonging to a specific class. 

 

RESULTS 

 

With the ML failing to run in its last stage it was hard to recommend this process 

to EMA and other agencies looking to track roof damage via blue tarps. However, 

supervised and segmentation both ran without major issues or technical errors. In 

applying the Supervised Classification 1212.287 pixels where found to be blue tarps 

placed on roofs. Of the original 1602.351 pixels were classified as blue tarps, 390.0637 of 

those pixels had to be removed due to not being blue tarps on roofs. This means that they 

represented pixels that made up objects such as water hoses, trash bin lids, pools or blue 

tarps that where not installed on roofs.  
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The correctly classified blue tarps as seen in Figure 12, showed the successes of 

Supervised classification in that the blue tarps on roofs where correctly classified and 

done so in that the whole area of the tarp was identified. The pixel-based classification 

used in supervised classification is done on a per-pixel level, with the spectral properties 

of each pixel determining which class it belongs to. The pixel-based technique ignored 

the characteristics of nearby pixels which led to a better more complete classification of 

the blue tarps.  

With the Segmentation method blue tarps after categorization and rectification, 

the final image only shows blue tarps placed on top of roofs, Figure 7. Blue tarps made 

up 1286.128 pixels of the image's total of 156112.739 pixels, or 0.823 percent. Before 

eliminating erroneously categorized items, a total of 2482.307 pixels were classified as 

blue tarps, of which 1196.178 could be eliminated due to not being blue tarps on roofs.  

This method brings together pixels that are similar in hue and have comparable 

form features. The Mean Shift method is used to segment the images. To identify which 

pixels are included in each segment, the approach employs a moving window that 

generates an average pixel value. The value was iteratively recalculated as the window 

advances over the image to ensure that each segment was appropriate. As a result, image 

pixels were grouped together into a segment with an average color as seen in Figure 6. 
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Table 6 . Showing the breakdown of land parcel blue roof tarp presence.  

Out of the 91 land parcels with a structure that fell within the 0.58 by 0.30-

kilometer orthomosaic land cover area, 25 had a structure with a blue tarp on a roof when 

overlaid with the Supervised Classification image. Of the 91 parcels, about 73% did not 

have a blue tarp on a structure’s roof within parcel’s boundary area. All 91 land parcels 

are classified as RU_1 zoning allows for higher density house development in Newnan's 

historic residential zones. Single-family houses and accompanying recreational, religious, 

and educational institutions are the primary uses of property in this district, which are 

typically expected to provide a balanced and organized neighborhood. The use of public 

water and sewer infrastructure is needed for all permitted purposes within this zoning. 

Low-density non-residential development and the encroachment of conflicting uses are 

avoided in high-density residential zones. 

27%

73%

Land Parcels

Blue Tarp on Roof No Blue Tarp on Roof



45 
 

 

Figure 16. Locations of land parcels with blue tarp on roof structure. Red crosshaching 

inicates blue tarp on roof within boundry. Green simple hacting inicates no blue tarp on 

roof within boundry. 

 Working with FEMA, the US Army Corps of Engineers is in charge of Operation 

Blue Roof. The goal of Operation Blue Roof, as mentioned earlier in this project, is to 

supply blue tarpaulin or similar fiber-reinforced sheeting to homeowners in recent 

disaster zones to cover damaged roofs until permanent repairs can be done. This is a no-

cost service for homeowners. One major benefit of Operation Blue Roof is that it helps to 

preserves property and allows residents to stay in their house as repairs can be done. This 
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program is for main residences or rental properties that are permanently occupied and 

have less than 50% structural damage. Most of the structures seen in the Newnan data 

would fall under the criteria needed for Operation Blue Roof as most are less than 50% 

structural damage, are occupied by main residences or rental properties that are 

permanently occupied.  
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CHAPTER FIVE 

 

DISCUSSION 

 
 This data showed that between the two methods that made it to completion, 

Supervised and Segmentation based off using the Newnan data they are yield nearly 

identical results, only different by about 73 pixels different between them in their final 

forms. The Segmentation required more manual correction than the Supervised 

Classification by 806 pixels, a quite minor difference when compared to the image as a 

whole. 

 However, since Supervised Classification runs faster and is a simpler process, for 

newcomers and those looking for an accelerated process of examining blue tarps on roofs 

it is a better tool to employ. This method along with the initial data collection, was 

simplified into a 6 steps procedure. The time it would take to process data using this 

procedure is hard to quantify as computer operating systems and output power vary.  

 Across all methods there where a serval objects that caused issues with processing 

complications. This was likely due to similar pixels colors and has an impact of accuracy 

along with adding extra time to the image processing. Due to these objects sharing such 

similar features to blue tarps, it was difficult to work around them making editing the 

vertices the most straightforward method of editing errors such as these.    
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 Alternately FEMA, EMA, NGOs and other emergency aid organization could 

supply tarps of a distinct color such as bright pink or yellow. This would allow for quick 

visual confirmation of the use of resources as well as improve remotely sensed 

classification as bright colors are less common in nature. Tarpaulin being a cheaper 

plastic material is easily mass produced and can come in many different colors. Moving 

to a color such as bright yellow eliminates most of the errors seen in this project. Any 

bright colors can be considered as long as the environment it will be used in is 

considered. For example, a neighborhood damaged by a tornado with many pools would 

have a more difficult time tracking blue tarp due to there visual similarities. Where as if a 

bright pink tarp was distributed for residents to used in the same neighborhood it would 

make Supervised Classification a much smoother and dynamic process. 
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Figure 17. Objects that caused issues in classification across all methods. From top left to 

right; trampoline, garden hose, pool with pool furniture, car window with sunshades, blue 

tent, trash piles with blue tarp, blue trash bins, blue car, green roof child's play structure. 
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COLORED TARPAULIN ANALYSIS AND RECOGNITION PROCEDURE 

 

The Colored Tarpaulin Analysis and Recognized Procedure (CTARP) following 

is the standard procedure for technicians looking to track colored roof tarpaulin on 

structures in post disaster areas. In this example the color tarp is blue as this is currently 

the most common color. The instructions call for the use of: a UAV with RGB sensor, 

UAV flight application (such as Pix4D Capture), and analysis software for processing 

and analyzing images such as Drone2Map and ArcGIS Pro (Spatial Analysist License). It 

is important to check your computer’s ability to run Ersi products. At the time of writing 

this, ArcPro 2.8 and Drone2Map 2020 are the two main software that are most commonly 

used. For most mapping and remote sensing projects, certain technical specifications 

must be met. These include: 32 GB of free space for storage purposes, a CPU of at least 2 

cores and a RAM minimum of 8 GB is needed. Additionally, understanding the level of 

operating system is also needed. Windows Server 2012 Standard and Datacenter (64 bit) 

is the oldest Microsoft Windows operating system that can run Esri products, with 

Windows 11 Home, Pro, and Enterprise (64 bit) being the most recent Windows 

operating system at the time of this writing. 

 

STEP 1: Study Area Data Collection 

The very first step in CTARP is to first determine the area to be analyzed. If collection is 

done with a UAV, pre-program the flight according to the area that is to be surveyed. 
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Collect imagery while maintaining a consistent AGL and obeying all local and FFA UAV 

regulations. It is best to have more than 70% of your imagery to have overlapping images 

and to fly on a cloudy day to reduce atmospheric interference. 

 

STEP 2: Creating an Orthomosaic 

After data of the selected site is collected, the technician must load images into 

Drone2Map using the “2D Rapid” option. Following this, within the Home frame, 

navigate to Processing and explore Options. Not many of these settings need to be 

changed depending on the flight. Be sure that under Initial, “Run Initial” and “Arial Grid 

or Corridor” are checked off. It is also important to check the Coordinate System to make 

sure that the local or best coordinate system is selected for the area being analyzed. The 

coordinate system used for the data collected by drone is typically WGS84, as drone data 

is collected using GPS coordinates. Once finished with the Options menus click apply, 

and this will start the orthomosaicing process. Once the orthomosaic is finished, it can be 

exported as a tiff file and opened in ArcGIS Pro. Tiff files are preferable due to their 

ability to maintain the high-quality detail that is capable of being collected by drone 

cameras, as drones are able to see an incredible amount of detail due to their much closer 

proximity to the ground than airplanes or satellites. 
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STEP 3: Begin Classification 

Once the technician has opened the tiff in ArcGIS Pro, select it in the Contents pane and 

navigate to Imagery, and then to the Classification Wizard. Configure the settings as 

follows: 

 

• Classification Method – Supervised 

• Classification Type - Pixel Based 

• Classification Schema – Default (NLCD2011) 

• Output Location – Insert location on D: drive to save file to  

 

Click Next and collect samples to train the data. You will need to add a field for blue 

tarps on roof using the Add New Class tool. Be sure to have 25 at minimum samples per 

class as this will ensure more accurate classification. After this, click Next again. The 

following page is the Train page in which the input for Classifier is Support Vector 

Machine and Maximum Number of Samples per Class is 500. Click Next. 

 

STEP 4: Complete Classification of Selected Image 

Following the resolution of Step 3, it will result in a preview of the classified image. If it 

looks accurate, click Next. If the image seems to not have classified correctly, or you find 

that certain objects are not being classified in accordance with what you wish, go back 

and review training samples, perhaps adding more classes to assist in a better 
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classification. Once happy with the classified image, click Next. Before hitting Run, 

name the Output Classified Dataset. This will result in complete classified image.  

 

STEP 4.5 (OPTIONAL): Boundary Cleaning 

Using the Boundary Clean tool, by smoothing the edges between classes it simplifies 

rasters. This is a recommended step but not required, if using this tool, run it twice for 

best results.  

 

STEP 5: Selecting Tarp Roofs 

To simplify the raster to only show blue roof tarps, go to the Attribute Table of the layer 

and make the blue roof tarps class its own layer by selecting all rows that make up the 

blue roof classification. This will highlight only the blue roof tarps and make editing the 

layer much easier.  

 

STEP 6: Remove Image Errors 

To remove errors, use the Raster to Polygon tool and leave the autogenerated settings. 

After clicking Run the result will be editable using the Edit Vertices under the Edit pane, 

this will make the vertices moveable and removeable. Use the original orthomosaic as a 

reference to the location of blue roof tarps. When finished it is very important to click 

Save under the Edit pane. This will result in a final image overlaid with the highlighted 

locations of blue roof tarps to indicate damaged but potentially salvageable structures.  
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CONCLUSION 

This thesis aimed to improve and support EMA’s GIS ventures when it comes to 

locating damaged structures with blue tarps. The objective was to evaluate which 

approach is the most efficient and accurate for identifying blue tarps by comparing 

picture segmentation, ML, and supervised classification. FEMA's mission comprises 

supporting people in the aftermath of catastrophes, thus disaster victims received 

government cash to help with temporary housing, emergency house repairs, personal 

property loss, funerals, and other expenditures. Observing communities from an elevated 

aerial perspective can give more insight into the damage done to homes and communities, 

allowing resources to be effectively directed to aid those in need. By locating structures 

with blue roofing tarps, EMAs and NGOs can get a more accurate number of those 

impacted by disasters who are likely still in dangerous areas. Disaster assistance is costly, 

logistically difficult, and largely reliant on public support, and the rising number of 

natural catastrophes associated with climate change has prompted researchers to study 

more about disasters. Ultimately, any research done in proximity to disasters should aim 

to lessen the effects of those most impacted by them. Finding the most effective way to 

observe these disaster areas with UAVs and track roof damage is the first step in creating 

a solid recovery for communities of future disasters. 

This research has evaluated three methods of analyzing blue roof tarps and 

concluded that Image Segmentation and Supervised Classification yield nearly identical 
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results. While Machine Learning has a great deal of potential, it is still a very new and 

complex technology that has a way to go until it can be effectively used for quick disaster 

recovery efforts. Although Image Segmentation and Supervised Classification’s final 

results were much the same, Supervised Classification is a much more accessible and 

established method that has a higher rate of success when finding blue roof tarps. 

Comparatively, it is also a faster tool to run, requiring little computing power. 

Thus, with these results, it is the Supervised Classification method that will be 

fundamental to CTARP. The processing of tarp locations can be used in a variety of 

different post disaster areas that sustain structural roof damage. This is the ultimate goal 

of this project: to produce a method that is applicable to studying the interactions between 

GIS and disaster recovery. This may be more easily facilitated by the deployment of tarps 

that have a markedly distinct color, such as yellow or bright pink. By implementing these 

changes and procedures, as well as progressing the development of CTARP, it can then 

be possible to better allocate resources to people and communities in need. 
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