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ABSTRACT

This paper explores and elaborates on a method of solving Pell’s equation as

introduced by Norman Wildberger. In the first chapters of the paper, foundational

topics are introduced in expository style including an explanation of Pell’s equation.

An explanation of continued fractions and their ability to express quadratic irrationals

is provided as well as a connection to the Stern-Brocot tree and a convenient means of

representation for each in terms of 2×2 matrices with integer elements. This represen-

tation will provide a useful way of navigating the Stern-Brocot tree computationally

and permit us a means of computing continued fractions without the tedium of un-

raveling nested denominators. The paper also introduces simple unary operations for

describing select permutations on continued fractions and, more importantly, their

matrix-product counterparts. In the latter chapters of the paper, interesting sym-

metries appear as a result of using the Wildberger Algorithm. Quadratic forms and

the subset of balanced quadratic forms will be shown to act as SL2(Z)-sets. Using

this language we explore solutions to the generalized Pell equation and demonstrate

a generalization for Norman Wildberger’s algorithm.

viii., 87 pages
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1. INTRODUCTION

Choose a positive nonsquare integer d. We will update this language in a later

chapter, but for now, let us refer to (a, b, c) ∈ Z3 as a step. At each step we may go

to the next step by choosing right or left. To decide, calculate the total : a + 2b + c.

If the total is less than zero, we choose right; if the total is positive, we choose left. If

our total is zero, we retrace our steps as this should not happen. Now, if we choose

a right step, then we set the next step (a′, b′, c′) = (a, a+ b, total). If we choose a left

step, we set the next step (a′, b′, c′) = (total, b + c, c). Now, we write the first step

(a, b, c) and as we take steps, we record them by writing N(a′, b′, c′) where N is the

chosen direction. We will start with a = 1, b = 0, and c = −d as our first step. Then,

if at any point we reach a step that is equal to the original (a, b, c), stop. Let us see

an example; the symbol WA will be explained later on. Let d = 14; then

WA : (1, 0,−14)

R (1, 1,−13)

R (1, 2,−10)

R (1, 3,−5)

L (2,−2,−5)

R (2, 0,−7)

R (2, 2,−5)

L (1,−3,−5)

R (1,−2,−10)

R (1,−1,−13)

R (1, 0,−14) stop.
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So we have taken three right steps, one left step, then two right, one left, and finally

three right steps. If the reader has followed along in the process with his or her own

choice of d, then set up the obtained counts of sequential left and right decisions in a

similar fashion to the product just below. Finally, compute the matrix multiplication

for the resulting string of matrices.

1 3

0 1


1 0

1 1


1 2

0 1


1 0

1 1


1 3

0 1

 =

15 56

4 15

 .
The reader may find it interesting that dividing the top right corner entry by

the bottom left corner entry will yield 14. Even more impressive however, is the fact

that the left column of the resulting matrix forms a solution to the equation

x2 − 14y2 = 1.

This equation is known as “Pell’s equation” and the fact that our little game

has produced a solution to it is no trivial matter. This famous equation has been

studied for centuries and is still under examination today. If one can find nonnegative

integral values for x and y that satisfy the equation, then x
y

will be a reasonable

approximation to the irrational number
√
d. The accuracy of such an approximation

is measurable without knowing the precise value of
√
d.

If one is compelled to try and find solutions to Pell’s equation, it becomes

rather useful to develop tools with which solutions may be reliably found and eval-

uated. During this exposition the reader will find some elegant (and convenient!)

relationships among different representations of rational numbers.

2



2. PELLS EQUATION

Let d be any nonsquare integer. Then define the set

Gd = {x+ y
√
d | x, y ∈ Z, x2 − dy2 = 1}.

Let us denote solutions to the equation x2 − dy2 = 1 as (x, y).

Theorem 1. Gd is a group under multiplication.

Proof. Let d be a positive nonsquare integer. Since elements x + y
√
d of Gd

are real-valued, we know that multiplication in the ordinary sense is associative (and

commutative). The only things remaining to be shown in order to demonstrate that

Gd is a group are: closure of Gd under its operation, the existence of an identity

element in Gd, and for every element Gd contains, Gd contains the multiplicative

inverse of that element also.

Let (x1, y1) and (x2, y2) be integer solutions to the equation x2 − dy2 = 1.

Then, x1 + y1

√
d, x2 + y2

√
d ∈ Gd. Let us see if the product of these two arbitrary

elements is also in Gd:

(x1 + y1

√
d)(x2 + y2

√
d) = x1x2 + y1y2d+ (x1y2 + y1x2)

√
d,

x1x2 + y1y2d, x1y2 + y1x2 ∈ Z .

Taking these integers as potential solutions, we insert them into of x2 − dy2 = 1 and

see that

3



(x1x2 + y1y2d)2 − d(x1y2 + y1x2)2

= (x2
1x

2
2 + 2x1x2y1y2d+ y2

1y
2
2d

2)− d(x2
1y

2
2 + 2x1x2y1y2 + y2

1x
2
2)

= x2
1x

2
2 + y2

1y
2
2d

2 − dx2
1y

2
2 − dy2

1x
2
2

= x2
1(x2

2 − dy2
2)− dy2

1(−dy2
2 + x2

2)

= x2
1(1)− dy2

1(1) = 1;

therefore, Gd is closed under multiplication.

Notice:

12 − d(0)2 = 1.

So, 1 + 0
√
d = 1 ∈ Gd. Therefore, since the elements of Gd are real numbers, the

identity 1 of the real numbers is inherited. The multiplicative identity element 1+0
√
d

is known as the trivial solution: (1, 0). To show the existence of multiplicative

inverses, let us return to the original equation with a solution (a, b) substituted in for

variables x and y. If a2 − db2 = 1, then

(1) a2 − db2 = (a+ b
√
d)(a− b

√
d) = 1.

We know that if (a, b) is a solution, that a+ b
√
d ∈ Gd, but now we should show that

(a,−b) is a solution as well.

a2 − b2
√
d = a2 − (−b)2

√
d = 1.

So, for all a+ b
√
d ∈ Gd, (a+ b

√
d)−1 = a− b

√
d ∈ Gd and Gd is a group. �

4



Every x, y ∈ Z such that x + y
√
d ∈ Gd forms a solution (x, y) to Pell’s

equation for d. Since Gd is a group,
(
x+ y

√
d
)n

will represent a solution for Pell’s

equation for any n ∈ Z. In fact, if (a, b) is the fundamental solution, the solution

for which a and b are the smallest positive values they can be as part of a solution,

then Gd =
〈
a+ b

√
d
〉

. Less succinctly that is, Gd is the group generated by a+ b
√
d.

Take note that for all eligible selections of d, x may not be zero since otherwise we

reach a contradiction:

[x2 − dy2 = 1 and x = 0] =⇒ −dy2 = 1 =⇒ d = −1/y2 < 0.

Furthermore, x = ±1 if and only if y = 0:

(−1)2 − dy2 = (1)2 − dy2 = 1 ⇐⇒ −dy2 = 0 ⇐⇒ d = 0 or y = 0.

Since d was assumed to be positive1, y must be 0.

As mentioned before, the special case of x = 1 and y = 0 is known as the

trivial solution and is valid for all d. Also, as noted earlier, 1 + 0
√
d = 1 is the

identity for Gd. Clearly, 1n = 1 for all n, but consider a nontrivial solution (a, b),

then a > 1 and b > 0. Let (a, b) be a solution inGd. Let (an, bn) be the precise element

in Gd, (a + b
√
d)n. Then, a1 + b1

√
d = (a + b

√
d)1 and a2 + b2

√
d = (a + b

√
d)2 =

(a+ b
√
d)(a1 + b1

√
d) = aa1 + ab1

√
d+ ba1

√
d+ bb1d = (aa1 + bb1d) + (ab1 + ba1)

√
d.

So, a2 = aa1 + bb1d and b2 = ab1 + ba1. To prove these relationships will

hold for all n, assume the relationship holds for some integer n > 1 and consider

the n + 1 case. We have an+1 + bn+1

√
d = (a + b

√
d)n+1 = (a + b

√
d)(a + b

√
d)n =

(a+ b
√
d)(an + bn

√
d) = aan +abn

√
d+ ban

√
d+ bbnd = (aan + bbnd) + (abn + ban)

√
d.

1If d is negative, the result is unchanged. We will not allow d = 0 since 0 is among the perfect
squares which have only the trivial solutions (1, 0) and (−1, 0).
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The inductive step complete, we have:

(2) an+1 = aan + bbnd

and

(3) bn+1 = abn + ban.

Lemma 1. Let a, b, d ∈ Z+ and a2 − db2 = 1, with d nonsquare, a > 1. If

an + bn
√
d = (a+ b

√
d)n, then {bn} is a strictly increasing sequence.

Proof. See Appendix A.1

Note, since {bn} is strictly increasing and bn is an integer for all n, it follows

that as n→∞, bn →∞. So, if (a, b) is indeed a nontrivial solution, then (a+ b
√
d)n

will generate an infinite number of solutions (an, bn). Moreover, as n increases, an
bn

will

improve as an approximation for
√
d.

In fact, David Burton in [1] provides a corollary that in our context says, if

(a, b) is the fundamental solution then

(4)

∣∣∣∣∣∣∣
an

bn
−
√
d

∣∣∣∣∣∣∣ ≤
1

bn
2 .

We now shift our focus to the notion of “continued fractions.” For the reader

interested in a more detailed introduction to Pell’s equation, [2] and [1] are recom-

mended readings.

6



3. CONTINUED FRACTIONS

Consider the set of nonnegative rational numbers (denotedQ+
0 ). No matter

what numerical base one is using, at least some of these numbers will have nonter-

minating representations. However, there is a notation that will allow us to express

any number in Q+
0 as a finite array of integers. Take the number 9

7
as an example.

The idea is that we would like to write 9
7

as the sum of some whole number a0 and

a fraction whose denominator recursively contains a similar sum2 until we reach a

denominator whose value is simply a whole number. We will require each level of

nested fraction to have a numerator of precisely 1. This will be clear after we perform

the algorithm on our example.

9

7
= 1 +

2

7
= 1 +

1
7
2

= 1 +
1

3 + 1
2

.

Once we have reached that last 2, there is no nontrivial mixed number repre-

sentation, so we stop here and write either 1 + 1
3+ 1

2

or 1 + 1
3+ 1

1+1
1

. We will stick to the

previous convention for the most part3. Now, let us represent our example fraction

by recording the whole number part a0 = 1 as well as the whole number part of each

denominator nested within the larger fraction as a list of coefficients. Then, we can

write

9

7
= 1 +

1

3 + 1
2

≡ [1; 3, 2].

In general, this type of fraction is known as a simple continued fraction.

2of some whole number a1 and a fraction whose denominator recursively contains a similar sum...
3See Appendix B.

7



Definition 1. A continued fraction c is a real number constructed by a se-

quence of real numbers {ai} where ai > 0 for i > 0 in the following way:

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

For each i > 0, ai is called a “partial denominator.” If the sequence used to

construct c is finite, we say c is a finite continued fraction. If the sequence used to

construct c contains only integers, we say c is simple. We will refer to this sequence

as the coefficients of c.

We will use the following conventions of notation. We may use a boldface letter

to refer to a continued fraction. If c is a nonnegative rational number, and c is the

list of coefficients of a continued fraction of equal value to c then we may write c ≡ c

since the value may be equal, but there may be more than one continued fraction

with the same value but different coefficients. We also wish to think of coefficients

as a notation that can be processed to retrieve a value without thinking of them as a

value in their own right. We will denote the coefficients of a continued fraction c by

c = [a0; a1, a2, ...] if c has infinitely many associated coefficients and c = [a0; a1, ..., an]

if c has a finite sequence of partial denominators.

8



3.1. Continued fractions for positive rational numbers. Let us begin

with a couple of examples of continued fractions for rational numbers.

Example 1:

4

19
= 0 +

4

19
= 0 +

1
19
4

= 0 +
1

4 + 3
4

= 0 +
1

4 + 1
4
3

= 0 +
1

4 + 1
1+ 1

3

≡ [0; 4, 1, 3]

Example 2:

56

15
= 3 +

11

15
= 3 +

1

1 + 4
11

= 3 +
1

1 + 1
2+ 3

4

= 3 +
1

1 + 1
2+ 1

1+1
3

≡ [3; 1, 2, 1, 3]

Note that this last example has a certain symmetry about it. We may find

later that there is a special property related to this type of symmetry.

Theorem 2. Every rational number may be expressed as a finite simple con-

tinued fraction by using the quotients of Euclid’s Algorithm.

Rather than attempting to reinvent the wheel, we will point out the application

of David Burton’s proof of Theorem 15.1 in [1].

Let p
q

be a rational number. Then, by an application of the Euclidean algo-

rithm, we may produce a sequence of integers (which will terminate) in the following

way:

9



p = qa0 + r1, 0 ≤ r1 < q

q = r1a1 + r2, 0 ≤ ri+1 < ri

r1 = r2a2 + r3

...

ri−1 = riai + ri+1

...

rn−1 = rnan + 0

stop.

(5)

By taking the quotient a0 from the first expression as the whole number part and

the quotients ai of each of the remaining expressions as the partial denominators, c

is expressed as a finite simple continued fraction.

Also, if a continued fraction is finite, then starting at the last partial denom-

inator and “folding” it up into a typical mixed number, we will only find elements

of Q. It is interesting to note that the value of any infinite continued fraction must

then be an irrational number (refer again to [1] for further reading), unlike the case

of infinite decimal representation (in any base) of real numbers (e.g. 0.3 in base-10).

3.2. Convergents and their defining recurrence relations. Now, un-

packing a continued fraction can become quite tedious, and in fact, it does take a lot

of paper and caution to ensure that no error is made. Fortunately, we have a way

to generate c from its coefficients (if they are available). This method will again rely

upon a pair of recurrence relations. Now, this pair of relations is defined and proven

reliable in a similar fashion in [1], but we will provide the demonstration here for

10



convenience. For any rational number c, we may write c = p
q
≡ [a0; a1, ..., ak, ..., an].

We say that ck ≡ [a0; a1, ..., ak] is the “kth convergent” of c. Since ck is a rational

number, let ck = pk
qk

for relatively prime integers pk and qk.

Notice that c0 = a0 = a0
1

= p0
q0

. So naturally, choose p0 = a0 and q0 = 1.

Next, notice that

c1 = a0 +
1

a1

=
a0a1 + 1

a1

=
p1

q1

.

So, let p1 = a0a1 +1 and q1 = a1. To find hypothetical definitions for pk and qk, k > 1,

let us examine the c2 case.

c2 = a0 +
1

a1 + 1
a2

= a0 +
1

a1a2+1
a2

= a0 +
a2

a1a2 + 1
=
a0(a1a2 + 1) + a2

a1a2 + 1

=
a0a1a2 + a0 + a2

a2a1 + 1
=
a0a1a2 + a2 + a0

a2a1 + 1

=
a2(a0a1 + 1) + a0

a2(a1) + 1
=
a2(p1) + p0

a2(q1) + q0

=
p2

q2

.

Since p2 = a2p1 + p0 and q2 = a2q1 + q0, it would be convenient if it were true

in general that pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2, and in fact, this is the

case.

Assume the relationships for pk and qk hold for all k > 1. Then, we know for

ck ≡ [a0; a1, ..., ak],

(6) ck =
pk
qk

=
akpk−1 + pk−2

akqk−1 + qk−2

.

11



Now consider ck+1. Look at just the tail end of the fraction:

(7) a0 +
1

a1 +
1

. . . +
1

ak−1 +
1

ak +
1

r

where r = ak+1. Then we can say ck+1 is equivalently the continued fraction

ck+1 ≡ [a0, a1, ..., ak−1, (ak + 1
r
)]. Granted, this fraction is not simple, but this only

leaves our demonstration more generalized. So consider the following:

ck+1 =
pk+1

qk+1

=
(ak + 1

r
)pk−1 + pk−2

(ak + 1
r
)qk−1 + qk−2

=
akpk−1 + pk−1

r
+ pk−2

akqk−1 + qk−1

r
+ qk−2

=
rakpk−1+pk−1+rpk−2

r
rakqk−1+qk−1+rqk−2

r

=
rakpk−1 + pk−1 + rpk−2

rakqk−1 + qk−1 + rqk−2

=
rakpk−1 + rpk−2 + pk−1

rakqk−1 + rqk−2 + qk−1

=
r(akpk−1 + pk−2) + pk−1

r(akqk−1 + qk−2) + pk−1

=
ak+1(pk) + pk−1

ak+1(qk) + qk−1

=
pk+1

qk+1

,

so by induction, we see that our relations for pk and qk hold for all k. Bear in

mind that calculating the value of a continued fraction in this way is tedious still, but

it is also much simpler to think about—especially when a computer may be used.

12



3.3. Accessory unary operations. Here we will define some unary opera-

tions that may help us in our discussion.

Definition 2. Let c ≡ c ∈ Q. Then

σ(c) =
∑

ai .

That is, σ will yield the sum of the coefficients for a given simple finite con-

tinued fraction.

Definition 3. Let c ≡ c ∈ Q. Then λ(c) is the number of nonzero coefficients

appearing in c. That is, λ(c) is the number of partial denominators in the continued

fraction given by the coefficients of c—plus one if the whole number part is nonzero.

Example 3: Let c = [0; 3, 2, 5]. Then

σ(c) = 0 + 3 + 2 + 5 = 10

and

λ(c) = 3.

Definition 4. Let c = [a0; a1, ..., an]. If c ≡ c ∈ Q+, then

1

c
≡ ρ(c) =


[0; a0, a1, ..., an] a0 6= 0

[a1; ..., an] a0 = 0.

ρ may be referred to as the reciprocal of a set of coefficients, but we might

also say that to perform ρ on c is to “flip” c.
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Definition 5. If c = [a0; a1, ..., an] is the list of coefficients for a finite simple

continued fraction, we say that c is the conjugate of c. Let rev(b) denote the

reversal of the nonzero coefficients of some finite simple continued fraction b. To

perform conjugation on c, first note of the value λ(c), whether it be even or odd.

Then,

c =


rev(c) if λ(c) is odd

rev(ρ(c)) if λ(c) is even

.

Simply put, under conjugation, the nonzero coefficients of a finite simple con-

tinued fraction with an odd value under λ are reversed. The same is true for conjuga-

tion of similar fractions with even values under λ except that in this case the leading

zero is “toggled” with the ρ function also.

Example 4: Consider b = [4; 3, 2, 1], and c = [2; 4, 5].

It is easy to see ρ(c) = ρ(c) and ρ(b) = ρ(b).

λ(c) = 3 λ(b) = 4

ρ(c) = [0; 2, 4, 5] ρ(b) = [0; 4, 3, 2, 1]

c = [5; 4, 2] b = rev(ρ(b)) = [0; 1, 2, 3, 4]

ρ(c) = [0; 5, 4, 2] ρ(b) = [0; 4, 3, 2, 1] = rev([4; 3, 2, 1])

ρ(c) = [0; 5, 4, 2] ρ(b) = [1; 2, 3, 4] = rev([4; 3, 2, 1])

3.4. Infinite solutions per infinite fractions. Our definition for λ is not

defined for infinite fractions, but there is a special case of infinite fractions that do

have a sort of length as is the case with repeating decimal expansions and their period.

As in the case of 0.234, we can also have continued fractions of the form:

[a0; a1, a2, ..., an].
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In fact, the coefficients of an irrational number x will become periodic if and only if x

is a quadratic irrational number4. However, for now we need only examine a special

case of fractions demonstrating periodicity. It is a commonly demonstrated fact that

if d is a nonsquare integer, then the coefficients generated by
√
d will have the special

form:
√
d ≡ [a0; a1, a2, ..., a2, a1, 2a0]

The allure of algebraically valued numbers with this nearlypalindromic nature is that

they are proven to generate solutions to Pell’s equation. Since we have seen that one

solution expressed in the language of Gd can be exponentiated to yield other solutions,

it would seem only natural that we see something of that nature here and indeed we

do. If the coefficients of
√
d have a period length of n, then the convergents pkn

qkn
will

form solutions (pkn−1, qkn−1) to the equation x2 − dy2 = ±(−1)kn for all k ∈ N.

Example 5: Consider the cases of
√

77 and
√

58.

For
√

77 ≡ [8; 1, 3, 2, 3, 1, 16], we see a period length of 6 and we have

p5
q5

= 8 + 1
1+ 1

3+ 1

2+ 1

3+1
1

= 351
40

. Notice that 3512 − 77(40)2 = 1.

There is no solution to the negative Pell equation x2 − 77y2 = −1.

Now, for
√

58 ≡ [7; 1, 1, 1, 1, 1, 1, 14] we see a period length of 7 and we have

p6
q6

= 7+ 1
1+ 1

1+ 1

1+ 1

1+ 1

1+1
1

= 99
13
. Notice that 992−58(13)2 = −1. While this calculation can

be verified, we will omit the continued fraction expansion for: p13
q13

= 19603
2574

. Assuming

its correctness, one can easily verify that 196032−58(2574)2 = 1 by using a calculator.

In this manner, solutions to Pell’s equations have been deduced, but the pro-

cess of generating the coefficients and proceeding to calculate their rational value

can be lengthy. However, we will soon explore a method of solving Pell’s equation

4I.e. x is irrational and the root of an irreducible degree two polynomial with rational coefficients.
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that skirts the tedium of using Euclid’s algorithm, the floor function, or the need to

manually generate coefficients for
√
d. However, the periodicity of coefficients will be

integral to our approach (pardon the pun).
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4. THE STERN-BROCOT TREE

The Stern-Brocot tree is a dressed up binary tree that allows one to navigate

to any rational number in a binary search style. The most beautiful feature of the

tree is that it is quite simple to generate algorithmically and employs a special set of

numbers to do so. These fractions are known as “Farey fractions.”

4.1. Farey fractions.

Definition 6. Let a, b, c, and d be positive integers. For fractions a
b

and c
d
, we

call the fraction a+c
b+d

their mediant. It can be shown that the mediant of two fractions

falls between them on the real number line.

Lemma 2. Let a, b, c, d ∈ Z+. If a
b
< c

d
, then a

b
< a+c

b+d
< c

d
.

Proof. Let a
b
< c

d
. Then

a

b
<
c

d
⇔ ad < bc⇔ ad+ dc < bc+ dc⇔ d(a+ c) < c(b+ d)⇔ a+ c

b+ d
<
c

d
.

Also,

a

b
<
c

d
⇔ ad < bc⇔ ad+ ab < bc+ ab⇔ a(d+ b) < b(a+ c)⇔ a

b
<
a+ c

b+ d
.

Therefore, a
b
< a+c

b+d
< c

d
. �

Now consider the ordered set of rational numbers F1 = {0
1
, 1

1
}. Define F ′i to be

the collection of mediants of each adjacent pair of fractions in Fi. Then, for all i ≥ 1,

let Fi+1 = Fi ∪ F ′i , whose elements are ordered by their position on the real number
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line. For each n ≥ 1, Fn is called a Farey sequence. The elements of these sequences

known as Farey fractions have some interesting properties, not the least of which

is that for any two adjacent Farey fractions a
b

and c
d

in some sequence Fn with a
b
< c

d
,

bc− ad will be equal to 1. Furthermore, each Farey fraction (ignoring 0
1

and 1
1

which

are not proper fractions), will be in least terms.

Example 6:

F1 =

{
0

1
,
1

1

}
; F ′1 =

{
1

2

}

F2 = F1 ∪ F ′1 =

{
0

1
,
1

2
,
1

1

}
; F ′2 =

{
1

3
,
2

3

}

F3 = F2 ∪ F ′2 =

{
0

1
,
1

3
,
1

2
,
2

3
,
1

1

}
; F ′3 =

{
1

4
,
2

5
,
3

5
,
3

4

}
Some Python code has been provided in Appendix D.2 that will allow for the

generation of Farey sequences.

4.2. An infinite tree with only two roots. Now that we have a canonical

understanding of Farey fractions, let us extend their definitions to include all nonneg-

ative rational numbers. Rather than filling the interval [0, 1], we desire to cover the

interval [0,∞) or, adopting the idea of the extended real numbers,
[

0
1
, 1

0

]
. Now, the

endpoints here must not be viewed as numbers in the usual sense, as this creates a

singular problem. Indeed, we could select 2
2

or 7
0

to respectively achieve the same val-

ues for our endpoints, but the mediants of these ordered pairs would not be the same.

So we choose the fractions as noted just now with precision. Define F1 = {0
1
, 1

0
}.

Then retain the original definitions of F ′i and Fn, 1 ≤ i and 1 < n.

Arranging the elements of Fn in rows, starting at the top with n = 2, each

fraction of any given row will contribute to creating precisely 2 mediant fractions in

the following row. By connecting each fraction to each of its two children, we will
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FIG. 1. An illustration of the Stern-Brocot tree

construct the Stern-Brocot tree.

Some interesting notes:

• If we use our extended definition for Farey fractions , c ∈ (0,∞), c ≡ c if and

only if c ∈ F ′σ(c).

• For any positive integer n there are precisely 2n many c ∈ Q+ with σ(c) = n.

• Each row of the Stern-Brocot tree of index n is constructed with precisely the

elements of F ′n−1; therefore, each row is the collection of fractions with a sigma

value of n− 1.

This idea can be demonstrated using a Python script provided in Appendix D.

4.3. Navigation: boxing it all into SL2(Z). We would like a language

in which we can discuss path traversal in the tree. It is a pleasure to introduce the

framework in which we will work for the remainder of the paper. The reader may

recall the observation that each q ∈ Q has two different representations as a continued

fraction. We will see that each of these representations points to one of two nodes on

the Stern-Brocot tree, and they share a parent q. These children are the mediants

of q and its neighbors in the Farey sequence in which q first appears. Adding one to
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FIG. 2. Left and right children for node 5
2

an would continue in the last direction traveled along the tree, while starting a new

coefficient an+1 = 1 would equivocate changing direction.

Example 7: Navigate to 5
2

on the tree. Notice that 5
2

has two forms as a

continued fraction:[2; 2] and [2; 1, 1]. The coefficients can read as “Go right 2 and

then left 2,” or taking the latter set of coefficients, “Go right 2, left 1, and then right

1.” In either case, we would travel through 5
2

to get to one of its two child nodes in

the succeeding Farey Sequence.

If this is still confusing, the reader may find it useful to ask: “Why does

each node in a particular level of the tree have the same value under σ? This is an

enlightening premise once understood and it will become easier to see as we introduce

a most elegant notation using 2× 2 matrices. However, we shall point out (though it

is easily guessed) that we can navigate to any positive rational number on the tree

by starting at 1 and going left or right at any node based on whether our current

position is too great or too small. If our position is greater than the desired number,

we choose left. Otherwise, we choose right. So, if one wanted to navigate to 4/7, one

would begin at 1/1 and choose left, right, left, left.
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We would like to express the rational numbers on the Stern-Brocot tree as 2×2

matrices. We know that the mediant of a pair of neighbors in the Farey sequence is

uniquely expressed. So, we can uniquely represent a fraction with our matrices by

placing the left parent in the the right column vector position and the right parent

in the left column vector position. So, for the parents 0/1 and 1/0, we would have the

identity matrix! For parents 2
3

and 3
4

we would have

 3 2

4 3

. Let us look at some

other examples by referring to Figure 2. Every node has two parents. One is the

previous node with a line drawn upward. The other parent will be the node indicated

by the faint vertical line descending as that is the “nearest” (as appearing on the

number line) of the nodes traversed so far, that is opposite the connected parent.

Example 8: Since 2
1

has parents 1
1

and 1
0
, we will make (1, 0)T the left column

and (1, 1)T the right column. To the right of 1
1
, we have:

2

1
≡

 1 1

0 1

 .
On the left of 1

1
, we have 1

2
:

1

2
≡

 1 0

1 1

 .
Now, before dismissing this example as trivial, please make note that these

two matrices are very dear to us—so much so that they bear a pair of special names:

R =

 1 1

0 1
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FIG. 3. 3
8

has parents 1
3

and 2
5

L =

 1 0

1 1

 .
The names L and R were adopted after their use in [4] within the section entitled

Relative Primality.

Example 9: Since 3
8

has the connected parent 2
5

to the right side, place (2, 5)T

in the left column, and then, since the nearest left-hand-side fraction is 1
3
, we put

(1, 3)T on the right.

3

8
≡

 2 1

5 3



In both examples, our matrices have determinant 1, and in fact, this will be the

case throughout. By swapping the order of the parents in our placing them as column
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vectors in matrices, we guarantee this lovely property since for Farey neighbors a
b
< c

d

we have bc − ad = 1. The most splendid part in all this is each matrix we have

mentioned is in SL2(Z) which, as it turns out, is generated by the special matrices

L and R mentioned in Example 8. We employ the adjective splendid because of

the elegant and simple properties belonging to these generators. Why, the fact that

each is the transpose to the other is enough to make one sigh, but nicer still are the

following facts, which are left as an easy exercise for the reader:

Rn =

 1 1

0 1


n

=

 1 n

0 1



Lm =

 1 0

1 1


m

=

 1 0

m 1


It cannot be overstated how convenient this is for our purposes.

Let c = [a0; a1, ..., an], and let ck = pk
qk

be the kth convergent for simple con-

tinued fraction c. Consider the following:

(8) Ra0La1 =

 1 a0

0 1


 1 0

a1 1

 =

a0a1 + 1 a0 + 0

a1 + 0 1 + 0

 =

 p1 p0

q1 q0


So, the column vectors of Ra0La1 are precisely the 0th and 1st convergents of c.

(9) (Ra0La1)Ra2 =

p1 p0

q1 q0


1 a2

0 1

 =

p1 a2p1 + p0

q1 a2q1 + q0

 =

p1 p2

q1 q2
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We will soon prove that the relationship demonstrated above will hold, but

first we need another definition.

Definition 7. Let C := {[a0; a1, ..., an] | n ≥ 0;∀i > 0, ai ∈ Z+}. Then, let

h : C −→ SL2(Z) such that if c ∈ C, then

h(c) =
n∏
i=0

Mai
i , where Mi =


R if i is even

L if i is odd.

We may refer to such products as strings or words in the alphabet {L, R}.

If we refer to such a product as a word, we will assume that the product has

been simplified such that all adjacent factors of the same base have been combined

by adding their exponents. For example, R0LRRLL2R5 would become LR2L3R5. If

we need to specify, this simplification will be called the abbreviated form of the

word in question. We will assume that all words have only nonnegative exponents

for our purposes as indicated by the restriction of coefficients in the preimage of h to

having only nonnegative values. This implies that all matrices generated in this way

will have only positive entries and will be an important feature later on.

Example 10: Let a = [2; 3, 5],b = [0; 3, 4], and c = [2; 2, 5, 1].

h(a) = R2L3R5

h(b) = R0L3R4 = L3R4

h(c) = R2L2R5L

We map from the set of appropriate coefficients for finite simple continued

fractions rather than from Q+ because it is more meaningful to do so. From here
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on, we will shift our attention to the convergents generated by quadratic irrationals;

furthermore, we need not worry about the interpretation of the matrices as rational

numbers. That is, we will use the convergents of quadratic irrationals to generate

coefficients, but after doing so, we will be less concerned with their origin and more

concerned with their interpretation as exponents for producing products in SL2(Z);

therefore make note of the following convenient result.

Theorem 3. Let c = [a0; a1, ..., an], and let ck = pk
qk

be the kth convergent for

simple continued fraction c. Then, for all n > 0, if n is odd, then

h(c) =

pn pn−1

qn qn−1

 ,
and if n is even, then

h(c) =

pn−1 pn

qn−1 qn

 .
Proof. We have already shown in equations (8) and (9) that this theorem holds

when n = 1 and n = 2 respectively. So, we may prove the theorem inductively if we

assume it to be true for all n and prove it for the even and odd cases for n+ 1.

Let n be even and naturally n+ 1 will be odd.

Then, h([a0; a1, ..., an+1]) = Ra0La1 ...Lan−1RanLan+1 = h([a0; a1, ..., an])Lan+1

=

pn−1 pn

qn−1 qn


 1 0

an+1 1

 =

an+1pn + pn−1 pn

an+1qn + qn−1 qn

 =

pn+1 pn

qn+1 qn

 .
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Next, let n be odd, so that n+ 1 will be even.

Then, h([a0; a1, ..., an+1]) = Ra0La1 ...Ran−1LanRan+1 = h([a0; a1, ..., an])Ran+1

=

pn pn−1

qn qn−1


 1 an+1

0 1

 =

pn an+1pn + pn−1

qn an+1qn + qn−1

 =

pn pn+1

qn qn+1

 .
Thus, by induction, the theorem holds for all n > 0. �

One immediate thing to ponder is that incrementing the sigma value of a

continued fraction by 1 is essentially to move down the Stern-Brocot tree one level by

choosing to go left or right one step. By incrementing the lambda value, we indicate

that our current choice differs from the previous one; by choosing the same direction

twice in a row, we increase the final coefficient rather than adding a new coefficient

to the end. So, the larger σ(c) is, the further down the tree we will go. The larger

λ(c) is, the more turns we will take. For this reason, one might refer to λ(c)/σ(c) as

the “indecisiveness” of c. The other unary operations mentioned before also have

meaning in our SL2(Z) representation. We will explain these in a later chapter.
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5. THE MAGIC OF SL2(Z)

SL2(Z) is a famous group that can be generated by the matrices L and R,

as we mentioned above. The fact that SL2(Z) is a group whose elements each have

determinant equal to one is precisely what we need in order to do meaningful work

regarding Pell’s equation. Contemplate this: If we have a matrix in SL2(Z) of the

form

(10)

 a bd

b a

 ,
then the determinant of this matrix will give us the equation

(11)

∣∣∣∣∣∣∣
a bd

b a

∣∣∣∣∣∣∣ = a2 − db2 = 1.

And thus, (a, b) forms a solution to Pell’s equation for d.

Definition 8. Let d be a positive nonsquare integer. Define Hd to be the

subset of SL2(Z) whose elements are of the form:

 a bd

b a

 . That is,


 a bd

b a

 ∣∣∣∣∣ a2 − db2 = 1

 .
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Theorem 4. (Gd
∼= Hd) Let d be a nonsquare positive integer. Then, the set

Hd equipped with the ordinary matrix multiplication is isomorphic to the multiplicative

group Gd.

Proof. Let ψ : Gd −→ Hd be given by ψ(a+b
√
d) =

 a bd

b a

. First, we show

ψ to be injective and surjective. To show injectivity, suppose ψ(a+b
√
d) = ψ(u+v

√
d)

and therefore,

 a bd

b a

 =

 u vd

v u

. This can only be if a = u and b = v,

and so, a + b
√
d = u + v

√
d. Thus, ψ is injective. Surjectivity comes naturally as a bd

b a

 ∈ Hd if and only if a2− db2 = 1, which is precisely the only trait required

to show a+ b
√
d ∈ Gd. So, ψ is surjective also.

Lastly, we show that ψ is a homomorphism.

ψ(a+ b
√
d)ψ(u+ v

√
d) =

 a bd

b a


 u vd

v u

 =

au+ bvd (bu+ av)d

bu+ av au+ bvd

 =

= ψ((au+ bvd) + (bu+ av)
√
d) = ψ(au+ bu

√
d+ av

√
d+ bvd) =

= ψ((a+ b
√
d)u+ (a+ b

√
d)v
√
d) = ψ((a+ b

√
d)(u+ v

√
d)).

So, ψ is a homomorphism as well. So, ψ is an isomporphism for Gd with Hd. �

Now, since finding any solution represented in one of these groups means that

we can generate infinitely many of them, we just need a way to find the first one

outside of knowing it is in the set already. What we would like is to find a way to

generate a solution in a finite number of steps guaranteed. That is precisely what we

will do next. As mentioned before, we can navigate the Stern-Brocot tree in pursuit

of a particular rational number and arrive after a finite number of correct steps if at
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each step we choose left if our target is less than our current node and choose right if

our target is greater. We will do a similar thing using R and L; since Hd ⊂ SL2(Z),

we can generate elements of Hd using only L and R.

5.1. Quadratic forms as a vehicle.

Definition 9. Let Q : R2 −→ R be given by Q(x, y) = ax2 + 2bxy + cy2

where a, b, c ∈ Z. We say that Q is a quadratic form. We will sometimes refer to a

quadratic form by its coefficients (in the canonical polynomial sense of the term) in

this manner:

Q ≡ (a, b, c)

We can also write quadratic forms in a more convenient way using matrices.

Let Q ≡ (a, b, c). Let (x, y)T = v.

Q(x, y) = ax2 + 2bxy + cy2 = ax2 + bxy + bxy + cy2 =

= (ax+ by, bx+ cy)(x, y)T = vT

 a b

b c

v = Q(v).
(12)

If Q ≡ (a, b, c), then we will call A =

 a b

b c

 the matrix of Q, and

∣∣∣∣∣∣∣
a b

b c

∣∣∣∣∣∣∣ the

determinant of Q. We will refer to Q as balanced whenever a > 0 and c < 0.

Definition 10. Let M be an invertible 2×2 matrix with integer entries. Then,

M−1 will also have integer entries, so that the determinant of each must be ±1. If

Q(v) = vTAv and A′ = MTAM , then we say Q′(v) = vTA′v and Q are equivalent

forms.
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And why not, since Mv is just a vector in the domain of Q and

Q′(v) = vTA′v = vT (MTAM)v = (vTMT )A(Mv) = (Mv)TA(Mv) = Q(Mv).

Also of note, since det M = ±1, we must have |A′| = |MTAM | = |M ||A||M | = |A|.

This is actually a particularly important note. The matrix of any quadratic form

will be symmetric, so let A′ be some symmetric matrix

 a b

b c

. Since L and R

both fit the requirements for the matrix M , we know that Q(Lv) and Q(Rv) will

be equivalent forms for Q. Casually speaking, this is to set the matrix of some form

Q′ to be one of A′ = RTAR = LAR (called a Right Step) or B′ = LTAL = RAL

(called a Left Step). Moreover, we can iteratively devise equivalent forms by taking

Q(j)(Mjv) at each step where Mj is one of L or R and Q(j) is the current form.

Because R and L are generators for SL2(Z), we can create a quadratic form

Q′(v) = Q(Nv) for any N in SL2(Z). And, we can do so constructively if we know

how to deduce the sequence of left and right steps to get there, although it is likely

that what we are after is not a known matrix. Indeed, what we desire is to use this

framework to find N ∈ SL2(Z) for which Q(Nv) = 1 because in doing so, we find

that the left column of N forms a solution to Pell’s equation! Thanks to the work

of Norman Wildberger, we can do just this. However, first we need to decide what

is an appropriate choice of A to seed the algorithm we wish to introduce; we would

like any and every step of the way to allow us to evaluate potential solutions to Pell’s

equation, so why not start there.

Definition 11. Let Q ≡ (1, 0,−d) where d is a nonsquare integer. Then,

Q(x, y) = x2 − dy2. This special quadratic form denoted Qd will be referred to as the

Pell quadratic form.
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The strategy we will employ is actually quite clever. Suppose we search for

and find N such that NTAN = A? In this case, we already know that if A is the

matrix of Q, then using the trivial solution e = (1, 0)T , we see that Q(1, 0) will be 1.

But also if A′ = NTAN is the matrix of Q′, then Q′(e) = Q(Ne) = 1 as well.

Let N =

 q r

s t

 be such a matrix so that Ne = (q, s)T and Q(Ne) =

Q(q, s) = 1. Then, we see that the left column of N will in fact be a solution to Pell’s

equation. Then, since NTAN = A, it is also true that (N2)TAN2 = A. This means

we may repeat the process starting with our latest Q′ each time and exponentiate

N in doing so. In this manner we will continue to generate these forms. So, we will

search for such N , and in doing so, we will see that there is a way to guarantee that

we will not search amiss.

5.2. A wild algorithm. We will now summarize the algorithm introduced

by Norman Wildberger in his article Pell’s Equation without Irrational Numbers [5]

without proof; however, we will formally define, prove and elaborate on some of these

statements in a later chapter.

We have chosen to start with Pell’s quadratic form Qd ≡ (1, 0,−d), which is

balanced. We will take left and right steps, creating equivalent forms for Qd all along

the way. To do this, we will ensure that each step yields a balanced form, which is

not automatic. For any given quadratic form Q ≡ (a, b, c), left and right steps follow

these patterns:

Left Step:

(13) LTAL =

 1 1

0 1


 a b

b c


 1 0

1 1

 =

a+ 2b+ c b+ c

b+ c c
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Right Step:

(14) LTAL =

 1 0

1 1


 a b

b c


 1 1

0 1

 =

 a a+ b

a+ b a+ 2b+ c


We will denote these steps by listing the previous form, an “L” or an “R” for

whichever step we took, and then the new form obtained like this:

(a, b, c)L(a+ 2b+ c, b+ c, c)

for a left step and

(a, b, c)R(a, a+ b, a+ 2b+ c)

for a right step.

We will call the sum of all entries of a form Q’s matrix the total and denote

it T . At each step, T will either be greater or less than 0. T will never equal zero

because the determinant of (a, b, c) must be that of (1, 0,−d) which is precisely −d.

If a+ 2b+ c were to be zero, then we would reach a contradiction since

−d = ac−b2 = ac+(2bc+c2)−b2−(2bc+c2) = (a+2b+c)c−(b2+2bc+c2) = −(b+c)2

(recall that d is a nonsquare integer).

After taking a step, let (a′, b′, c′) be the newly obtained equivalent form. At

each step, we want a balanced form; therefore, we would like a′ to be positive and

c′ to be negative. So, if T = a + 2b + c < 0, notice that a right step would set

c′ = a + 2b + c < 0 and a′ = a > 0 (a > 0 since we started with a balanced form).

Then, similarly, if T > 0, a left step would put a′ = a+2b+c > 0 and c′ = c < 0. But

now that we have our rule for taking steps, we would like to know why this is helpful.
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At each step, we must have det NTAN = ac − b2 = −d where N is our cumulative

word built from the alphabet {L,R}. Since ac < 0, we will have only finitely many

solutions to the equation ac− b2 = −d 5

With there being only a finite number of forms for us to traverse, we will

certainly loop back to one we have encountered previously. Once this happens, the

state will provide identical criteria with which we decided to go left or right at that

step before. Once we reach such a familiar place, this will be our signal to stop;

otherwise, the algorithm will loop continually through the same decision sequence.

The first of these familiar forms will indeed be (1, 0,−d). At any step, we can check

to see what type of step was required to arrive there in a similar fashion to how we

decided what step to take next. That is, we may calculate a′ − 2b′ + c′ and check if

it be positive or negative. Since a′− 2b′ + c′ = (a+ 2b+ c)− 2(b+ c) + c = a > 0 if a

left step was taken, and a′ − 2b′ + c′ = a− 2(a+ b) + a+ 2b+ c = c < 0 in the event

of a right step , we may simply determine if a′ − 2b′ + c′ is greater or less than 0.

Since we have both a finite sequence of possible steps we can take, and since

at each step we can deduce what step was taken to get there, we can also trace the

path back to the starting point. Once we have found N , we know we can iterate

through an infinite number of solutions since products of R and L have only positive

entries. This is easily seen if one refers back to the section on navigation through the

Stern-Brocot tree using R and L. And this makes sense as our resulting N will be an

element of Hd and a second iteration will result in an identical string of Ls and Rs.

The entries of our matrices will only continue to grow and, therefore, we will never

return to the same matrix N in all our iterations.6

5An algorithm, written in Python, that returns all the solutions to ac − b2 = −d as quadratic
forms can be found in Appendix D.

6See Appendix D.4 for a Python program that will perform this algorithm for any given balanced
quadratic form.
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Returning to the example provided in the introduction, we can see an interest-

ing pattern appear. If the reader will only take the steps as indicated in the second

column, he or she will find that the computation of each form is done by the matrix

multiplication and the original shortcut we introduced is equivalent.

Example 11: Let d = 14.

WA : (1, 0,−14) Q(v)

R(1, 1,−13) Q(1)(v) = Q(Rv)

R(1, 2,−10) Q(2)(v) = Q(1)(Rv)

R(1, 3,−5) Q(3)(v) = Q(2)(Rv)

L(2,−2,−5) Q(4)(v) = Q(3)(Lv)

R(2, 0,−7) Q(5)(v) = Q(4)(Rv)

R(2, 2,−5) Q(6)(v) = Q(5)(Rv)

L(1,−3,−5) Q(7)(v) = Q(6)(Lv)

R(1,−2,−10) Q(8)(v) = Q(7)(Rv)

R(1,−1,−13) Q(9)(v) = Q(8)(Rv)

R(1, 0,−14) Q(10)(v) = Q(9)(Rv) = Q(Nv)

Where N = R3LR2LR3.

Notice anything intriguing about the exponents of the factorization of N?

Recall that the period of a simple continued fraction
√
d for some positive nonsquare

integer d has a palindromic flavor to it. This pattern arises directly from this feature

of periodic continued fractions, but we did not directly employ any knowledge of

continued fractions to perform this algorithm. Naturally this pattern will continue.
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6. REFLECTIONS ON SYMMETRY

As we look a little closer at this algorithm, several questions arise. It is quite

interesting that since each step guarantees we have a balanced form, we could start at

any step along the path and generate all the same stepping stones in a loop. Before

we get into that however, let us revisit our unary operations from before.

6.1. Unary operations revisited. Clearly, increasing the value of λ(c)

would be to add some an+1 to the end of the coefficients of c, which would translate

as appending to the end of product h(c) an Lan+1 if n is even and an Ran+1 if n is

odd.

Definition 12. If W is a word in the alphabet {L,R}, then λ : SL2(Z) →

Z+∪{0} be the length of W so that λ(W ) is the number of factors in the abbreviated

product of W .

Now σ is quite simple to revisit, simply take the sum of the exponents in the

abbreviated form of a word and be sure to add 1 for each letter whose exponent is

omitted so that if W = R2LR, then σ(W ) = 4.

And now we arrive at the more interesting operations and will finally be able

to introduce a well known matrix operation in terms of our own operations here.

Definition 13. If W is a word in the alphabet {L,R}, then the conjugate

of W , denoted WC, is the reversal of the order of its letters such that if W =
n∏
i=0

Mi

where Mi is the ith letter of W from the left, then WC =
n∏
i=0

Mn−i.
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Let us see an example:

Example 12: Let U = RL2R2 and let V = R2L3RL4.

Reversing the order of the letters we have

UC = (RLLRR)C = RRLLR = R2L2R

and also

V C = (RRLLLRLLLL)C = LLLLRLLLRR = L4RL3R2.

Definition 14. If W is a word in the alphabet {L,R} such that W =
n∏
i=0

Mi

where Mi is the ith letter of W from the left, then W F =
n∏
i=0

MT
i , is called the flip of

W .

This is analogous to the operation ρ and in fact, if h(c) = W , then h(ρ(c)) =

W F . To see this, recall that ρ(c) is the same as adding or removing a 0 in the

a0 position. If W = h(c), then by Definition 7 of h, W = Ma0
0 Ma1

1 . . .Man
n then

h(ρ(c)) = M0
0M

a0
1 Ma1

2 . . .Man
n+1 = (Ma0

0 )T (Ma1
1 )T ...(Man

n )T = W F . Note, the case

where a0 = 0 is covered here since this just means that Ma0
i = M0

i = I. More

importantly, flipping a matrix W is an intermediate step of transposing it since we

have (A1A2...An−1An)T = ATnA
T
n−1...A

T
2A

T
1 as a known theorem about transposition of

matrices—notice that if Ai ∈ {L,R}, this is by definition the conjugation of a flipped

word (or the flip of a conjugated word). Let us see some example to demonstrate the

relationship between transposition, flipping, and conjugation.
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Example 13: Let W = LRRLRLL. Recall that RT = L

W F = LTRTRTLTRTLTLT = RLLRLRR

W T = (LR2LRL2)T = (LT )2RTLT (R2)TLT = (WC)F = R2LRL2R

also note:

W F = RLLRLRR = LT (R2)TLTRT (L2)T = (L2RLR2L)T = (WC)T

The fact that transposition can be written as both a conjugation and flip (or

reciprocation if thinking of convergents) in either order is quite nice. But one may

equally think of a flip as both a conjugation and a transpose (in either order). We

may now use these to describe the symmetry that we began to see at the end of

chapter 5 more generally. The reader may find it an interesting preliminary exercise

to refer to definitions 4 and 7 and see that if one computes the product of factors

in L,R for both some h(c) and h(ρ(c)), the result of one will be a rotation of each

of the elements of the other. However, if a proof of this concept is desired, one may

refer to Appendix A.2.

Theorem 5. Let P = {∅, F, C, T} where ∅ is the identity function mapping

a matrix A onto itself. P forms an abelian group under function composition. This

group, which preserves the determinant of any matrix it permutes, is isomorphic to

the Klein four-Group K4 = {(1), (14), (23), (14)(23)}, a subgroup of S4.

Proof. If P is a group, it is abelian as every group of order less than six is

abelian. There are only 2 group structures for sets containing only four elements and

the Klein four-group is one. Therefore, to show isomorphism we need only demon-

strate that P is a group and that it shares a singular property with K4 which is

each element of P is an involution. We will, however, indicate the correspondence of
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elements to those of S4 for simplicity. Let A =

 a1 a2

a3 a4

 be a word in the alphabet

{L,R}. The property of associativity is inherited from function composition in the

general sense.

The identity function ∅ is given by ∅(A) = A. As such, ∅ is analogous to (1)

which is the identity element of S4.

So, there exists an identity element for P .

We know that

 a1 a2

a3 a4


T

=

 a1 a3

a2 a4

 and that transposing the result

again will return the matrix to its original state. In this way, T is analogous to (13).

We know that

 a1 a2

a3 a4


C

=

 a4 a2

a3 a1

 by Corollary 4 in Appendix A.2.

Clearly, repeating this operation a second time will result in a return to A. C repre-

sents the element (14) from S4.

Finally, we know

 a1 a2

a3 a4


F

=

 a4 a3

a2 a1

 by Corollary 3 in Appendix A.2.

This action of flipping is equivalent to performing both C and T to the matrix A

once in either order. As with the other cases, performing another operation of F is

to return to A.

So, each element is its own inverse; this last property is the exact one required

to show P ∼= K4.

It is known that < Z2 × Z2,+ > is isomorphic to K4 as well. To see this,

compare the Cayley Table below to those known for the Klein four-group and Z2×Z2.

There is much more that could be said about this—namely that by intro-

ducing some specific other functions one could generate other groups effecting even

permutations on A.
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P ∅ C F T
∅ ∅ C F T
C C ∅ T F
F F T ∅ C
T T F C ∅

FIG. 4. Cayley Table for P

6.2. Types of symmetry. When examining the words produced by Norman

Wildberger’s Algorithm, if we start with a Pell’s quadratic form, we will end up with

a word that forms a palindrome. However, there are at times some sub-symmetries

that we might wish to examine. To describe these, we will employ the following terms.

Definition 15. A word W in the alphabet {L,R} is called chiral if there

exists a word K in the alphabet {L,R} such that W = KKT .

Note that if W is chiral, then W = W T ; however, if W = W T , then W does

not necessarily factor into the form W ′(W ′)T .

Definition 16. A word W in the alphabet {L,R} is called palindromic if

W = WC.

If W is either palindromic or chiral, we will say that W is symmetrical. Nat-

urally, the matrix resulting from performing the product indicated by W in SL2(Z)

will result in either a proper symmetric matrix

 e f

f g

 whenever W is chiral or a

persymmetric matrix

 a b

c a

 if W is palindromic.
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Example 14: Let U = RL3R2LR and V = RL4RL.

If S = RL3R2LRLRL2R3L = (RL3R2LR)(LRL2R3L) = UUT , then S is

chiral.

Similarly, if S ′ = LR4LRLRL4R = (LR4LR)(LRL4R) = V TV , then S ′ is

chiral. If P = R2L4RL4R2 = (R2L4RL4R2)
C

= PC , then P is palindromic. Also, if

P ′ = RL4RL2RL4R = (RL4RL)(LRL4R) = V V C , then P ′ is palindromic.

In either case of palindromic or chiral matrices, notice that the list of exponents

for the letters of the words will always form a palindrome. Bearing this in mind,

assume that the exponents of the word W in the alphabet {L,R} form a palindrome.

Then there is a way to classify these symmetries using λ and σ. If λ(W ) is even,

we know that the word W will start with R and end with L or it will begin with

L and end with R and therefore cannot be a palindrome. So, assuming that the

exponents of W are a palindrome, λ(W ) is even if and only if W is chiral. Under

the same assumption, λ(W ) is odd if and only if W is palindromic. If λ(W ) is odd

and σ(W ) is even, then W is the product of some subword and its conjugate, each

in the alphabet {L,R}. While this may seem of no consequence, it might provide

some interesting insight useful to those who wish to run reports programmatically.

Especially, since we sometimes have words N = KKC constructed from {L,R} for

which K is chiral, N(1, 0)T forms a solution to the Pell’s equation x2 − dy2 = 1, and

K(0, 1)T forms a solution to the negative Pell’s equation x2 − dy2 = −1. If K is

chiral, then σ(K) = 2k for some k ∈ Z+. If this is the case though, we also know

that σ(N) = 2σ(K) = 2(2k) = 4k for some k ∈ Z+. Furthermore, this can only be

the case when σ(N) is even in the first place.
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One point of interest (which is demonstrated in Example 16 found in Appendix

C) is that whenever these chiral sub-words appear, the middle quadratic form will look

like (d, 0,−1). Moreover, when this occurs, there is a tendency for forms between the

(1, 0,−d) and (d, 0,−1) to be of the forms (a, b,−a) and (a,−b,−a) where d = a2+b2.

Upon review of Theorem 15.14 of [1] and its corollary, the fact that these

negative solutions arise when they do will seem only natural as in these cases we also

find that σ(N) is precisely twice the period length of
√
d. And since K is chiral,

N can be factored further into N = KKC = BBT (BBT )
C

= B BT (BT )
C
BC or

equivalently, B BTBFBC . In either of these forms, it is nice to see that they are just

permutations on the same sub-word.
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7. BUILDING OUR VEHICLE

Wildberger’s Algorithm is nice indeed and in his article (see [5]), he take

things a step further by offering a means of speeding up the algorithm. However,

our interest is exploratory, so it is valuable that we should explore the mechanics of

quadratic forms a bit more.

7.1. Rebuilding the engine.

Definition 17. Let F denote the set of all quadratic forms whose matrices

have only integer entries. Let ∗ : F × SL2(Z)→ F such that if N ∈ SL2(Z), fA ∈ F

with matrix A, then fA(v)∗N = fA(Nv) = (Nv)TA(Nv) = vT (NTAN)v, an element

of F with matrix NTAN . We will use a capital ∆f to indicate the determinant of a

quadratic form f .

Note that for any balanced form fA ≡ (a, b, c) ≡

 a b

b c

 = A, ∆fA =

ac − b2 < 0. Also, if fA(v) ∗ N = vT (NTAN)v then as shorthand, let us denote

the function fA without the evaluation of vector v so that fA(v) ∗ N = fA(Nv) is

equivalently recorded as fA∗N ≡ NTAN . We will also drop the subscript and simply

comment what matrix belongs to a quadratic form f .

42



Theorem 6. F is an SL2(Z)-set where * is a right group action of SL2(Z)

on F .

Proof. There are two conditions:

1. f ∗ I = f for all f ∈ F .

2. f ∗ (MN) = (f ∗M) ∗N for all f ∈ F ,M,N ∈ SL2(Z)

let f ≡ A be any quadratic form in F . For the first condition, f ∗ I ≡ ITAI =

A ≡ f . For the second condition, let M,N ∈ SL2(Z). Then, consider f ∗ (NM) ≡

(NM)TA(NM) = (MTNT )A(NM) = MT (NTAN)M = MT (f ∗N)M ≡ (f ∗N)∗M.

�

Note that for fA, fB ∈ F , if there exists invertible M such that fA(Mv) =

fB(v), then fA and fB are equivalent forms by definition. Therefore, for all N ∈

SL2(Z), if f ∈ F , then f ∗N is an equivalent form of f .

We cannot say that f is equivalent to g = f ∗ N if and only if N ∈ SL2(Z)

since this equivalence could also use matrices from GL2(Z) which contains matrices

of determinant −1. So, we will now introduce a more restrictive equivalence relation

concerned only with matrices of SL2(Z) acting on elements of F .

Theorem 7. Let f, g ∈ F . Then, define the relation ∼ such that f ∼ g if

and only if ∃N ∈ SL2(Z) such that f(v) ∗ N = f(Nv) = g(v). ∼ is an equivalence

relation.

According to Theorem 16.14 of [3], this property is established solely by the

fact F is an SL2(Z)-set. Note that while Fraleigh makes no mention of “right group

actions” specifically, it is established elsewhere that right group actions are equivalent

to the generic or “left” actions described in [3]. With this in mind, we will talk about

our right action as if it were any other group action without issue.
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Now, to say that two forms are equal is to say that their matrices are equal as

well. So if we say that fA ∗ N = fB it is because NTAN = B. This makes it quite

easy to show that the determinant of any two equivalent forms in F are equal.

Lemma 3. Let f, g ∈ F . Then, if f ∼ g, then ∆f = ∆g.

Proof. This follows directly from the multiplicative property of determinants

for matrices. Recall that all elements of SL2(Z) have determinant 1. �

So, if f, g ∈ F , f ∼ g with f ≡ (a, b, c) and g ≡ (a′, b′, c′), it follows that

ac− b2 = a′c′ − (b′)2.

Clearly, under our restriction for ∼ equivalence, two equivalent forms will have

the same determinant. The size of this equivalence class is infinite however. This is

easy to demonstrate once we have finished rebuilding our vehicle, but for now, we

would like to define a finite set of forms to examine. According to [3], each equivalence

class [f ] for representative f ∈ F is an orbit in F under SL2(Z). The following

two definitions are respectively more specific versions of Definitions 16.13 and 16.15

taken from [3].

Definition 18. For each f ∈ F , the set SL2(Z)f = {N ∈ SL2(Z) | f∗N = f}

is known as the isotropy subgroup of f .

Fraleigh states that SL2(Z)f is indeed a subgroup of SL2(Z) in [3]. We will

see later that this is not such a surprise in some contexts.

Definition 19. Let f ∈ F . Then, the equivalence class [f ], called the orbit

of f , is given by [f ] = {f ∗N | N ∈ SL2(Z)}.

Since there are infinitely many elements of SL2(Z), it may be that each [f ]

has infinite elements also. We can, however, prove that the set of balanced forms in

F equivalent to some f is finite.
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Definition 20. For f ∈ F , let [f ]b denote the subset of fSL2(Z) containing

only balanced forms.

Note that if f is not balanced, [f ]b ⊆ [f ] but f /∈ [f ]b.

Theorem 8. For all balanced forms f ∈ F , [f ]b is finite.

Proof. Let f ≡ (a, b, c) with a > 0, c < 0. Then, ac − b2 = ∆f. Note that

ac < 0. Then, a′c′− (b′)2 = ∆f ⇐⇒ a′c′ = (b′)2 + ∆f < 0. Since (b′)2 > 0, we know

that there are a finite number of integer solutions to 0 ≤ (b′)2 < −∆f (clearly, ∆f

must be negative). Since (b′)2 can only take on finitely many values, and there are a

finite number of factorizations a′c′ of (b′)2 + ∆f , we know that there are only a finite

number of values for a′, b′, c′ for which ac − b2 = a′c′ − (b′)2 and thus, only finitely

many forms (a′, b′, c′) for which (a, b, c) ∼ (a′, b′, c′). �

Now that we know there are finitely many balanced quadratic forms in [f ]b,

we can easily recognize that for any balanced form used as a seed, the Wildberger

Algorithm will lead to a step reached previously. Each step taken produces yet

another balanced form and there are finitely many stepping stones available as seen

in Theorem 8. However, we can do better; we know that we will return to the very

form we began with if it is able to continue far enough. When the determinant of

the starting matrix is of the form −m2 for some integer m, we may reach some point

where the total is zero in which case our algorithm will stop. As noted earlier, this

is never an issue when we begin with a Pell’s quadratic form because we demanded

a nonsquare determinant; however, we wish to generalize the Wildberger algorithm

to process other forms than the Pell’s quadratic form. So before we go on to show

that the algorithm will return to the first form, let us refine the definition of the

Wildberger Algorithm.
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Lemma 4. If a+ 2b+ c = 0, then

∣∣∣∣∣∣∣
a b

b c

∣∣∣∣∣∣∣ = −m2.

Proof: If a+ 2b+ c = 0, it follows that a = −2b− c. Now let ac− b2 = D.

Then, we also have (−2b − c)c − b2 = −c2 − 2bc − b2 = D. Therefore, D = −(b2 +

2bc+ c2) = −(b+ c)2. �

Definition 21. Let F− = {(a, b, c) ∈ F | a > 0, c < 0;@m ∈ Z s.t. ∆(a, b, c) =

−m2}; that is, the subset of F of balanced forms whose determinant is not a negative

perfect square.

We now formally introduce the generalized Wildberger Algorithm.

Definition 22 (The Wildberger Algorithm). Taking any starting form f0 ∈

F− as a seed, we may define a sequence of balanced forms equivalent to f0 using L,R

by computing the value T = a + 2b + c (called the total) and applying the following

rule:

fi = fi−1 ∗Mi where Mi =


L if T > 0

R if T < 0

for all i ∈ N.

The Wildberger Algorithm, denoted WA refers to the process of computing a

sequence of such steps and recording the actions performed until a chosen criterion

is met. By default, the criterion for terminating will be reaching a quadratic form

f satisfying f = f0. Repeating the process until the termination criterion is met, a

single cycle will be referred to as an iteration.

The sequence of steps generated may be expressed either as a word in the alpha-

bet {L,R} or as a list of actions without asterisks such as: WA : (a, b, c)Mi(a
′, b′, c′)

where (a, b, c)∗Mi = (a′, b′, c′) and Mi is an appropriate choice of L or R. A quadratic

form equivalent to f0 reached from taking appropriate left and right steps may be re-

ferred to as a stone in the path of f0 (taken from the term “stepping-stones”).
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Note ∆fi = ∆f0 for all i > 0, under the rule of the WA By the contrapositive

of Lemma 4, the W.A. will never hang on a total of 0 since we will not take any seed

whose determinant is additive inverse of a perfect square. We will also never encounter

any stone in the path of f0 that is unbalanced since at each step we appropriately

place T into one of the slots a′ or c′ to ensure they retain the sign of the former stone

and allow the other to retain the previous value from the previous stone.

One might find it convenient that whenever f0 ∈ F−, [f0]∩F− = [f0]b. Whether

or not the stones generated by WA seeded with f0 ever make up the entire set [f0]b

has yet to be seen. Later, we will demonstrate that it is certainly not always the

case. For now we will ponder the cyclic nature of WA. Since at each step Mi is

unambiguous, if two stones in the path of f0 are equal, then they will have the same

next step Mi+1.

Lemma 5. Let f, g ∈ F ,M ∈ SL2(Z). Then, f(v) ∗M = g(v) if and only if

g(v) ∗M−1 = f(v).

Proof. To show the forward direction, let f have matrix A and let f(v) ∗M =
g(v).

Then,

f(v) ∗M = f(Mv) = (Mv)TA(Mv) = vT (MTAM)v = g(v).

Now notice

g(v) ∗M−1 = g(M−1v) = (M−1v)T (MTAM)(M−1v) =

= vT (MM−1)TA(MM−1)v = vTAv = f(v)

To show the reverse direction, simply swap f and M with g and M−1 respectively. �

Theorem 9. Let f0 ∈ F− be a seed for a sequence generated by WA. Then,

WA must return to f0 after a sufficient number of steps. That is, ∃n > 0 such that

fn = f0.
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Proof. By Theorem 8 and Lemma 4, we know that ∃k ∈ N such that fk = fn

for some 0 ≤ k < n. We can show that the smallest n for which this is true will yield

fn = f0.

Suppose 0 ≤ k < n where n is the smallest possible selection allowing fk = fn.

Since the choices of Mk and Mn are unambiguous decisions for fk−1 ∗Mk = fk and

fn−1 ∗ Mn = fn, it follows from Lemma 5 that Mk = Mn. Therefore, by another

application of Lemma 5, fn ∗M−1
n = fn−1 = fk−1 = fk ∗M−1

k . Now, simply replace

n and k with n − i and k − i respectively and let 0 ≤ i ≤ k since n and k are just

nonnegative integers and we know that for each increment down from n and k, we

will still have fn−i = fk−i by the same logic as for the fn−1 = fk−1 case. Then, if we

let i = k we will find that fn−k = f0 where n− k > 0. Notice then that since we said

n should be the smallest possible selection allowing fk to equal fn and we must have

started with n = n− k and k = 0. So fn = f0 �

7.2. Preparing to drive. Before we start the engine, we should be sure we

know how to navigate properly once we are no longer on a rail and then gas up with

some motivations for proceeding to drive.

Theorem 10. Let c < 0 < a for a, c ∈ Z and let A be the matrix of (a, 0, c).

If, N =

 p q

r s

 ∈ SL2(Z) and NTAN = A, then N is persymmetric.

Proof. Let NTAN = A. It follows that AN = (NT )−1A.

 a 0

0 c


 p q

r s

 =

 p r

q s


−1  a 0

0 c

 =

 s −r

− q p


 a 0

0 c
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ap aq

cr cs

 =

 as −rc

−qa pc

 =⇒ ap = as, cs = cp.

It follows that p = s meaning that N is persymmetric. �

We also have

(15) aq = −rc.

Notice also that if N is persymmetric, it is in the right shape for elements of Hd.

Theorem 11. Let a, b, c ∈ Z with a + c = 0, 0 < a and let A be the matrix of

(a, b, c). If, N =

 p q

r s

 ∈ SL2(Z) and NTAN = A, then N is symmetric.

Proof. Let NTAN = A. It follows that NTA = AN−1. Note that c = −a.

 p r

q s


 a b

b −a

 =

 a b

b −a


 s −q

− r p


pa+ rb pb− ra

qa+ sb qb− sa

 =

as− br bp− aq

bs+ ar −bq − ap


From the resulting equations, we can derive q = r; therefore, N = NT meaning that

N must be symmetric. �

(16) Also, 2rb = a(s− p)

Note that this last equation is derived without the assumption that a+ c = 0.
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It is clear to us that we cannot have a nontrivial word that is both chi-

ral and a palindrome. It is left to the reader as a simple exercise to show that 1 0

0 1

 ,
−1 0

0 −1

 are the only matrices N in SL2(Z) that satisfy NTAN = A

when A =

 a 0

0 −a

. This can be done similarly to the proofs of the last two Theo-

rems. The reader may refer again to Example 16 of Appendix C and note the different

symmetries that arise. If one chooses to do so, look back to the stones generated for
√

13 as you go to see how these matrices correspond to them.

Our next theorem will illustrate the motivation for our efforts more clearly.

WA was introduced as a way to solve Pell’s equation and Pell’s equation was in-

troduced as a means of approximating square roots for positive nonsquare integers.

However, using our generalization of WA, we will show that we can use it to gen-

erate approximations of any quadratic irrational of the form
√

c
a

whenever a, c are

relatively prime square-free positive integers.

Theorem 12 (The infinite road to
√

c
a
). Let a, c ∈ Z+ be integers with

gcd(a, c) = 1 where a and c are not both square. Suppose that n ∈ SL2(Z) is a word

generated by WA seeded with f ≡ (a, 0,−c) such that (a, 0,−c)N(a, 0,−c). Then,

N =

 p q

r s

 satisfies the following criteria:

1. N is persymmetric (in fact, a palindrome).

2.
∣∣p
r
−
√

c
a

∣∣< 1
r2

.

3. q
r

= c
a
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Proof. 1 is an immediate result from Theorem 10; therefore,

 p q

r s

 =

 p q

r p


To show 2 note that since f ∗ N = f, f(v) = f(Nv). Now, we know that

f(x, y) = ax2 − cy2 and it follows that f(1, 0) = a. With this we can assume that

f(Nv) = a where v = (1, 0)T .

 p q

r p


 1

0

 =

 p
r


So, f(p, r) = ap2 − cr2 = a. Now the algebra.

ap2 − cr2 = a

p2 − c

a
r2 = 1

p2

r2
− c

a
=

1

r2

p2

r2
=

1

r2
+
c

a

p

r
=

√
1

r2
+
c

a

0 <
p

r
<

1

r
+

√
c

a∣∣∣∣pr −
√
c

a

∣∣∣∣ < 1

r

To show 3, we notice that NTA = A(NT )−1 and then borrowing from 1, we see
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 p q

r s

 =

 p q

r p

 also. Therefore by

 p r

q p


 a 0

0 −c

 =

 a 0

0 −c


 p −q

− r p

 ⇐⇒
ap −cr
qa −pc

 =

ap −aq
cr −cp

 ,
we obtain cr = aq and finally, q

r
= c

a
.

Note that, while we do not prove it, WA traces the path to
√

c
a

in the Stern-

Brocot tree. Therefore, because N is the resulting matrix product of the L and

R-steps traced, the column vectors of N will be the convergents of
√

c
a
. Since p

r
is

one of these convergents, the above inequality can be improved to
∣∣p
r
−
√

c
a

∣∣ < 1
r2

as

commented on above equation 4 on page 6. Moreover, if one finds some N satisfying

Theorem 12, since the left column of N is a convergent of
√

c
a
, Lemma 1 says that

r will increase in size as we raise N to some power m. And, Nm will also satisfy

Theorem 12. So, we can find as good an approximation as we want in this way.

Also, since 1 is a positive integer, selecting 1 as a, we generalize the algorithm

to include calculating ratios of quadratic irrationals in addition to its original integral

application. Now, consider Equation (7) from section 3.2. If we remove the r-term,

we get a rational number q; however, if we replace r, we get a new value x. But

can’t we write this as x = q + r′? With a little effort we can see that by adding the

r-term, we are adding or removing (if r is a coefficient with odd index) some value r′.

If r′ is rational this is obvious. If r′ is a quadratic irrational, then r is irrational and

the sequence of denominators from there on will become periodic. Looking at this

in reverse, approximating r′ is the tricky bit (that we now can do easily), but any

extra rational value added to r′ can be thought of as appending some finite sequence

of coefficients to the beginning of the fraction.
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Example 15: Consider 61
16
. While we will not display the full results here, run-

ning the code found in Appendix D.4, you can verify the result yourself. According

to our generalized algorithm, we will let a = 16 and c = 61 and then evaluate

WA ((16, 0,−61)). The abbreviated word following is the result:

N = RLR20L12R2L4R3L15R3L4R2L12R20LR.

σ(N) = 101, λ(N) = 15.

Since λ(N) = 15, if we abbreviate the path and note only the stones between

changes from a left to right (or right to left) decision, we can summarize the path

in 15 stones. However, it is more interesting to check the accuracy of our obtained

approximation.

The resulting matrix is:

N =

 1, 766, 319, 049 3, 448, 848, 195

904, 615, 920 1, 766, 319, 049

 .

Also, 3,448,848,195
904,615,920

= 3.8125 = 61
16

and
√

61
16

is approximately:

1.9525624189766635985324306839398.

Using our obtained left hand column,
1, 766, 319, 049

904, 615, 920
is exactly:

1.9525624189766635988453530643149.

The resulting error is around 0.3129223803751 × 10−18 and 1
r2

is 1.2220009599... ×

10−18.
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Now, suppose that we let a = 1, c = d. Then, Theorem 12 provides us with the

following fact: N is persymmetric where (1, 0,−d)N(1, 0,−d) and q
r

= d. With a bit

of effort, one might realize that N ∈ Hd. Remember the isotropy groups mentioned

before? Hd is the isotropy group for (1, 0, d).

7.3. Driving in circles. Concerning orbits, if one were to try seeding WA

with an unbalanced form, the algorithm is likely to run infinitely generating unbal-

anced forms along the way. There is a special condition on the value of b that allows

WA to return to balanced forms and work correctly, but this is not the intended

use. Regardless, since the algorithm is potentially capable of producing an infinite

sequence of steps with only unbalanced forms, the orbits of a given seed form f0 may

be many. However, since we know that [f ]b is a finite subset of the orbit, for any two

forms f, g ∈ F showing [f ] ∩ [g] = ∅ is sufficient to show [f ]b and [g]b are disjoint.

What is more, since ∆g = ∆f for all g ∈ [f ], we can look at a collection of orbits

classified by their determinant. If we restrict ourselves to the balanced subset of the

orbits we have:

⋃
∆f=−d

[f ]b ⊆
{

(a, b, c) | a > 0, c < 0, ac− b2 = −d
}
.

This set is finite we know, but it may also have some intriguing features. Namely, the

stones generated by WA for some f with ∆f = −d will all be in this set. If we find

that two seeds f, g both have determinant −d but the stones generated by WA for

each are disjoint (and they must be either disjoint or equal if f, g are both balanced).

this begs the question: “Are the orbits of f and g disjoint?”
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Theorem 13. If ∃N ∈ SL2(Z) such that (1, 0,−d)N(d, 0,−1), then N(0, 1)

is a solution to x2 − dy2 = −1.

Proof. Suppose there is some N ∈ SL2(Z) such that (1, 0,−d) ∼ (d, 0,−1).

Let N =

 p q

r s

 . Then,

 p r

q s


 1 0

0 −d


 p q

r s

 =

 d 0

0 −1


 p r

q s


 1 0

0 −d

 =

 d 0

0 −1


 s −q

− r p


 p −rd

q −ds

 =

 ds −dq

r −p


p = ds

q = r.

So, N =

 ds q

q s

 and ∆N = 1 = ds2− q2. But this also means that q2− ds2 = −1

so N(0, 1) forms a solution for the negative Pell equation for d.

It is noteworthy that the constraints on N required symmetry. In fact, this is

precisely what we see in the example for d = 13. Any time the form (d, 0,−1) shows

up as a stone in the path of (1, 0,−d), we are guaranteed to have the symmetric

matrix N for which N(0, 1) is a negative Pell solution for d.
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Corllary 1. If there is no solution for the negative Pell equation for a non-

square positive integer d, then the orbits of (1, 0,−d) and (d, 0,−1) are disjoint.

Proof. This follows directly from Theorem 13. If there can be no equivalence

between any two quadratic forms, then their equivalence classes must be disjoint due

to the transitivity of the relation.

Here we find an interesting thought: if we can show that there is an equivalence

f ∼ g for any f ∈ [(1, 0,−d)] and g ∈ [(d, 0,−1)], then we will show the orbits of

(1, 0,−d) and (d, 0,−1) are equal and that there is a negative Pell solution available

for d. However, it would be nice to have a stronger statement.

Corllary 2. The equation x2−dy2 = −1 has an integral solution if and only

if (1, 0,−d) ∼ (d, 0,−1).

Proof. By Theorem 13, the back direction of this corollary is shown. We will

now show the forward direction is also true with ease. Suppose there is a solution

(q, s) to the equation x2−dy2 = −1. Then, ds2−q2 = 1, so let us examine the matrix

N =

 ds q

q s

 ∈ SL2(Z). Note that NT = N

 ds q

q s


 1 0

0 −d


 ds q

q s

 =

 ds −qd

q −sd


 ds q

q s



=

 d2s2 − dq2 dsq − dsq

dsq − dsq q2 − ds2

 =

 d(ds2 − q2) 0

0 −1

 =

 d 0

0 −1


Therefore, anytime there is a negative Pell solution (q, s) for d, we will know

that the matrix N =

 ds q

q s

 satisfies (1, 0,−d)N(d, 0,−1).
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The trouble that remains for us is just this: if WA produces two distinct

paths for forms f, g this doesn’t mean they are disjoint necessarily. Although the

equivalence would have intermediate steps into forms that are unbalanced, there still

may be some path of equivalence between them. So we cannot say that there is

no negative solution based solely on the fact (d, 0,−1) is not a stone in the path of

(1, 0,−d).
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8. CLOSING THOUGHTS

In mathematics we often discuss the cardinality of sets and the poetic thing

about topics such as these are that asking questions often leads to exponentially

more questions. The Stern-Brocot tree being a binary tree, it has countably many

nodes, but uncountably many infinite paths. It should then be only natural that

there will always be more to learn and know. When beginning this research I had

an interest in algebra and my major professor was currently interested in number

theoretic problems. To his amusement, I may have made it an algebra problem

anyway. This is easily done—algebra is everywhere.

More work needs to be done to classify, and even restrict, the group and orbits

used to evaluate the forms we have examined. We have only mentioned in passing

the forms that produce solutions to the sum of squares problem but they are present

nonetheless.

Concerning the Stern-Brocot tree and its representation in SL2(Z), it is in-

teresting: it seems quite possible to express everything as discussed using the inverse

matrices L−1 and R−1 and one might suspect that this language can be expanded into

the negative rational numbers. Furthermore, if one were to take inverse steps amidst

the usual left and right steps on the tree, one would find the resulting matrix isn’t

in the tree—at least not in the usual sense. If it is true that the Stern-Brocot tree

can be described using other combinations of L,L−1, R,R−1, then the question would

be, can these alternate trees be accessed using these ”incorrect” intermediate steps?

Think about it. If we make a series of left and right decisions on the Stern-Brocot tree
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represented through matrix multiplication, we could easily backtrack by multiplying

by the inverses of steps taken in reverse order. However, if we were to take steps such

as LR−1L, this enclosed inverse right decision would find us somewhere we do not

recognize.

There is also the question of other notations. There is potential for represen-

tation of continued fractions as strings in a more robust sense than that of the matrix

products alone that utilizes concatenation. The study of strings under concatenation

is useful in its own right, so to think that continued fractions might be expressible

in this way is nice. It is natural though, since we know that adding more terms to

the end of a fraction is the same as adding more factors to the right side of a matrix

product in SL2(Z).

Concerning the generalized Wildberger algorithm, we have placed a restriction

on the numbers a and c that they not both be square, but in fact, we may let both be

squares and we will get the path down the Stern-Brocot tree for the rational number√
a
c
. In the exploration of these quadratic forms used as a seed for the algorithm,

it was devised that we may take any number u+
√
v

w
where u2 < v and first propose

a = 1, b = 2u
w
, and c = u2−v

w
and then simply multiply each by the least integral

scalar m so that am, bm, and cm are integers and in this way we acquire a seed for

WA allowing for approximations to u+
√
v

w
. If v is a perfect square so that v′ =

√
v

and u = 0 then we have a seed form of (w2, 0, (v′)2) = (w2, 0, v) and will find not

an approximation, but an exact expression of v′

w
when we take the mediant of the

resulting matrix produced from the left and right steps taken.

This particular topic needs more exploration, especially since we do not have

an mechanism for quadratic irrationals of the mentioned form when u2 > v. Allowing

u2 > v causes unbalanced forms, so the algorithm we have examined is not sufficient

in its current state. Alas, there are so many questions that can be asked, but having

59



finite time and resource, one must be selective concerning which topics should be

pursued. It is here we conclude the primary work, but not without hope for the

continuation thereof.
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APPENDIX A

ACCESSORY PROOFS AND DEFINITIONS

If mathematics is a miracle, John 21:25 waxes poignant.

A.1. Omitted proofs.

Lemma 1. Let a, b, d ∈ Z+ and a2 − db2 = 1, with d nonsquare, a > 1. If

an + bn
√
d = (a+ b

√
d)n, then {bn} is a strictly increasing sequence.

Proof. Since b1 = b and, notice that

b1 > 0

b1 + b1 > 0 + b1

ab1 + a1b > b1

and by equation (3) on page 6

b2 > b1.

We also have a1a > a1 and b > 0 (since a > 1); therefore, b1b > 0 as well.

Combining a1a > a1 with b1b > 0 we obtain a1a+ b1b > a1 + 0 and so by equation (2)

on page 6, we have a2 > a1 also. Now, assume bn > bn−1 and an > an−1 for all n > 1.

Then b > 0 =⇒ anb > 0. Also a > 1 =⇒ bna > bn and thus anb + bna > 0 + bn.
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Therefore, bn+1 > bn

A.2. Unary operations and permutations.

Theorem 14 (Reciprocal Representation of Coefficients). If c > 1 and c ≡

c = [a0; a1, a2, ..., an] has convergents pk
qk

defined in the usual way, then 1
c
≡ ρ(c) has

convergents
p′k
q′k

where p′0 = 0, q′0 = 1, and for all k > 0, p′k = qk−1 and q′k = pk−1.

Proof. Let for rational number c greater than 1, c ≡ c = [a0; a1, a2, ..., an].

Then ρ(c) = [b0; b1, b2, ..., bn+1] where b0 = 0 and bi+1 = ai for all i > 0. We know

that the convergents of c will be given by
pk

qk
where pk, qk are defined by

p0 = a0 q0 = 1

p1 = a1a0 + 1 q1 = a1

pk = akpk−1 + pk−2 qk = akqk−1 + qk−2.

Similarly, the convergents
p′k

q′k
of ρ(c) will be given by

p′0 = b0 q′0 = 1

p′1 = b1b0 + 1 q′1 = b1

p′k = bkp
′
k−1 + p′k−2 q′k = bkq

′
k−1 + q′k−2.

By the definitions for the convergents of c and bi, we obtain

p′0 = 0 q′0 = 1

p′1 = a0(0) + 1 = q0 q′1 = a0 = p0

by mere substituion. Having satisfied p′0 = 0, q′0 = 1, we now wish to demonstrate

that
p′k

q′k
=
qk−1

pk−1

for all k > 0. This is satisfied for k = 0 as seen in the last block of

equations, so to demonstrate the general case, we can use induction on k. Assume
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the hypothesis holds for all k > 0. Then,

p′k+1 = bk+1p
′
k + p′k−1 = akqk−1 + qk−2 = qk

and

q′k+1 = bk+1q
′
k + q′k−1 = akpk−1 + pk2 = pk.

This completes the induction and the proof.

Corllary 3. If W =

 u v

x w

 is the resulting matrix product of a word in

the alphabet {L,R}, then

 u v

x w


F

=

 w x

v u


Proof. If W is a word in the alphabet {L,R}, then there exists c ∈ C (namely

the exponents of W ’s abbreviated form) such that h(c) = W . Without loss of gener-

ality, Let c ≡ c be greater than 1. Let
pn−1

qn−1

and
pn

qn
be the final two convergents of c.

Then we have W =

 pn pn−1

qn qn−1

 when n is odd and W =

 pn−1 pn

qn−1 qn

 when n is

even. Since h−1(W f ) = ρ(c, as noted immediately following Definition 14, if we let

p′n

q′n
and

p′n+1

q′n+1

be the final two convergents of ρ(c), we can infer that W F = h(ρ(c) is

equal to  p′n+1 p′n

q′n+1 q′n


when n is even and  p′n p′n+1

q′n q′n+1
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when n is odd. It follows from Theorem 14 that

 p′n+1 p′n

q′n+1 q′n

 =

 qn qn−1

pn pn−1

 and

 p′n p′n+1

q′n q′n+1

 =

 qn−1 qn

pn−1 pn


These are the only cases, and each satisfies the requirement desired to show u v

x w


F

=

 w x

v u

.

Thus emphasizing once more the term “flip.”

Corllary 4. Let A =

 a b

c d

 be the resulting matrix product from a word

in the alphabet {L,R}. Then AC =

 d b

c a



Proof. By Corollary 3; we know that AF =

 d c

b a

 . Since we also know

that for word W,W T = (W F )T , we can infer that (AF )T = ((AF )F )C = AC meaning

AC = (AF )T =

 d c

b a


T

=

 d b

c a

.

Definition 23 (Continued Fractions). A (positive) simple continued fraction

c is a real number constructed by a sequence of integers {ai} where ai > 0 for i > 0

in the following way: c = a0 + 1
b1

where for all i ≥ 1, bi =


ai + 1

bi+1
ai+1 exists

ai otherwise.

Note that bi 6= 0 for any i since every ai after the first must be positive.
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APPENDIX B

AMBIGUITY OF FORM

There are some subtleties desiring attention regarding the representation of

rational numbers as continued fractions. One such subtlety is the handling of inter-

mediate zeros. We might wish to construct new fractions from joining two sets of

coefficients together, but what if one has a value between 0 and 1? In this case we

would have a zero in the middle of our coefficients. But never fear: We may handle

intermediate zeros with ease given that the right criteria are met.

Theorem 15 (Handling intermediate zeros in coefficients). If continued frac-

tion c ≡ [a0; a1, ..., ak−1, ak, ak+1, ..., an], ak = 0, and for all i, ai ≥ 0, then c ≡

[a0; a1, ..., ak−1 + ak+1, ..., an], so long as there exists n > k for which an > 0.

Proof. Let c ≡ [a0; a1, ..., an] where an 6= 0. Suppose k is the largest integer

less than n for which ak = 0. Then, suppose r ≡ [ak+1; ..., an] and no coefficient for

the expansion of r will be equal to zero. It follows that

c = a0 +
1

a1 +
1

. . . +
1

ak−1 + 1
0+ 1

r

= a0 +
1

a1 +
1

. . . +
1

ak−1 + 1
1
r
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= a0 +
1

a1 +
1

. . . +
1

ak−1 + r

= a0 +
1

a1 +
1

. . . +
1

ak−1 + ak+1 + 1

...+ 1
an

Now, ak−1 + ak+1 is just an integer and ak+1 is positive, so ak−1 + ak+1 > 0

and c ≡ [a0; a1, ..., ak−1 + ak+1, ..., an]

This theorem is sufficient to claim that we can remove all intermediate zeros.

If we have some continued fraction with multiple intermediate zeros, we may perform

the process described in the proof for the last zero, relabel the coefficients with their

new indices, and finally repeat the process for the new last zero whose index will be

less than that of the first. In this way, we will eliminate each zero in less than n steps.

Now, if c represents an infinite fraction, so long as there are only finitely many

zeros in c, the theorem will still hold. The reader may wish to explore this idea on

their own.

Now that we have handled intermediate zeros, we will create a rule for trailing

zeros.

Definition 24. If c ≡ [a0; a1, ..., an, ...] and ai = 0 for all i > n, we will say

instead that c ≡ [a0; a1, ..., an].

For an example of handling zeros, see Example 18 in Appendix C.1

Now, the intention in addressing ambiguous forms is that if we want to define

a clear mapping of the rational numbers (or at least the positive rational numbers)

onto the set of continued fraction coefficients and then onto the Stern-Brocot tree,

we would prefer if our mapping were one-to-one and therefore invertible.
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For reference, here are the recurrence relations for pk, qk as introduced by [1].

(17)

p0 = a0 q0 = 1

p1 = a1a0 + 1 q1 = a1

pk = akpk−1 + pk−2 qk = akqk−1 + qk−2

Now, consider the scenario where we have some rational number ck = pk
qk

and let

ak+1 = 1

(18) [a0; a1, ..., ak] ≡
pk
qk

=
akpk−1 + pk−2

akqk−1 + qk−2

[a0; a1, ..., ak + 1] ≡ (ak + 1)pk−1 + pk−2

(ak + 1)qk−1 + qk−2

=
akpk−1 + pk−1 + pk−2

akqk−1 + qk−1 + qk−2

=
(akpk−1 + pk−2) + pk−1

(akqk−1 + qk−2) + qk−1

=
pk + pk−1

qk + qk−1

(19)

(20) [a0; a1, ..., ak, ak+1] ≡ ak+1pk + pk−1

ak+1qk + qk−1

=
1(pk) + pk−1

1(pk) + pk−1

=
pk + pk−1

pk + pk−1

It is of no real surprise that we find [a0; a1, ..., ak + 1] ≡ [a0; , a1, ..., ak, 1] since

we did comment in passing earlier that every fraction may be written in an alternate

form whose last partial denominator is 1 so long as we subtract 1 from the next to last

partial denominator. However, for those concerned with well-defined notation, this

becomes slightly troublesome. Our coefficient notation does not uniquely define the
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rational numbers (except for 0 which has no trailing 1 to be placed), so an alternate

interpretation is proposed. Notice that each of the two forms for any positive rational

number c will have the same value for ak−1. Because of this, we can easily and uniquely

represent any positive rational number with the usual coefficients if we simply subtract

1 from ak so, let us now define an alternative to the normal convention.

Definition 25. Let C := {[a0; a1, ..., an] | n ≥ 0; ∀i > 0, ai ∈ Z+}. Also, let

c = p
q
∈ Q+ and let ai be quotients obtained by the euclidean algorithm for p

q
(as seen

in equation (5) of page 10). Then, let g : Q+ → C such that g(c) = [b0; b1, ..., bm]

where m =


n− 1 an = 1

n otherwise,

∀i < m, bi = ai, and bm =


an−1 an = 1

an − 1 otherwise.

Note that the coefficients of g(c) are still coefficients in the same right as

the original version—they still operate in the same way. That is, we treat them no

differently regarding our unary operations. The only difference is that if c = g(c) =

[b0; b1, ..., bn]+, then the convergents for ck remain the same when the recurrence

relations for pk and qk are defined for bk and k < m. However, cm has some nuance

to it.

Theorem 16. Let ai be the quotients obtained by performing the euclidean

algorithm on p
q
. If c = [a0; a1, ..., an] and b = g(c) = [b0; b1, ...bm], then c =

(bm(pn−1)+pn−2)+pn−1

(bm(pn−1)+pn−2)+pn−1
. That is, c is the mediant of convergents cm−1 and cm−2 as defined

for bi.

Proof. Recall that c = cn = pn
qn
. Then,

(bm(pn−1) + pn−2) + pn−1

(bm(qn−1) + qn−2) + qn−1

=
(an − 1)pn−1 + pn−2 + pn−1

(an − 1)qn−1 + qn−2 + qn−1

=
anpn−1 − pn−1 + pn−2 + pn−1

anqn−1 − qn−1 + qn−2 + qn−1

=
anpn−1 + pn−2

anqn−1 + qn−2

=
pn
qn

= c
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To see the clarification that c is the mediant of the last two convergents of the coeffi-

cients b, simply use the fact that [b0; b1, ..., bm] = [a0; a1, ...an − 1]. By an application

of equation (19) we can deduce that cn ≡ [a0; a1, ..., an] = [b0; b1, ..., bm+1] ≡ pm+pm−1

qm+qm−1

where pk, qk are defined on the coefficients b.

While this mapping under g may only be defined for Q+, this is enough. The

Stern-Brocot tree only contains positive rationals. That is, we don’t really consider F1

to be in the tree. What we wanted was a unique representation for some classification

of rational numbers and what we have obtained is a representation that will cover the

whole Stern-Brocot tree which makes our work with matrices a bit cleaner. Notice

that we have not done anything that should negatively impact our use of unary

operations. The unary operations were defined on the set of coefficients, and the

codomain of g is still in that set. The interpretation for convergents does not change.

We only make the change c does not equal cm but rather c is the mediant of cm and

cm−1. Since our coefficents are still working correctly under g, we may now build

further.

Definition 26. Let φ : Q+ → SL2(Z) such that φ(c) = h(g(c)).

Theorem 17. Let c ∈ Q+. If φ(c) =

 a b

c d

, then c = a+b
c+d

. That is,

φ−1


 a b

c d


 = a+b

c+d
.

Proof. We know that the convergents of c (as defined under g) will make up

the column vectors of φ(c) so that φ(c) is one of

 pm pm−1

qm qm−1

 and

 pm−1 pm

qm−1 qm

.

In either case, pm+pm−1

qm+qm−1
= c

What we now have is a function that lets us travel between the positive ra-

tional numbers and Stern-Brocot tree in both directions with unique representations
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(because the Stern-Brocot tree has every positive rational number precisely once). To

see a demonstration, refer to Example 20 in Appendix C.1.

We leave the reader with something to explore.

Definition 27. Let Cn := {c ∈ Q+ | σ(g(c)) = n − 1}. φ [Cn] is the set of

matrix representations of nodes on the nth level of the Stern-Brocot tree.
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APPENDIX C

EXAMPLES

Example 16 (Let d = 13 and note 32 + 22 = 13):

WA : (1, 0,−13)

R (1, 1,−12)

R (1, 2,−9)

R (1, 3,−4)

L (3,−1,−4)

R (3,2,−3)

L (4,−1,−3)

R (4, 3,−1)

L (9, 2,−1)

L (12, 1,−1)

L (13,0,−1)

L (12,−1,−1)

L (9,−2,−1)

L (4,−3,−1)

R (4, 1,−3)

L (3,−2,−3)

R (3, 1,−4)

L (1,−3,−4)

R (1,−2,−9)

R (1,−1,−12)

R (1, 0,−13)

72



The resulting matrix N after one iteration of WA is R3LRLRL6RLRLR3. The

exponents form a palindrome, but also, σ(N) = 20 which is even. Notice that the

middle factor has an even exponent.

R3LRLRL6RLRLR3 = (R3LRLRL3)(L3RLRLR3)

Now while the resulting two factors on the left of this last expression are not palin-

dromic, they are chiral.

(R3LRLRL3)(L3RLRLR3) =
[
(R3LR)(LRL3)

] [
(L3RL)(RLR3)

]
So, if A = R3LR then, AC = RLR3, AF = L3RL, and AT = (AF )

C
= (L3RL)

C
=

LRL3. With these identities, we obtain

N = AATAFAC .

Since we know the permutation interpretation of these matrices by the work in Ap-

pendix A.2, we can generate a simplified product for N quite easily. First, find A :

A = R3LR =

 1 3

0 1


 1 0

1 1


 1 1

0 1



=

 1 3

0 1


 1 1

1 2

 =

 4 7

1 2
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Then we obtain

N =

 4 7

1 2


 4 1

7 2


 2 1

7 4


 2 7

1 4


But, we also know that N = (AAT )(AAT )

C
therefore, we can simplify further by

finding AAT .

AAT =

 4 7

1 2


 4 1

7 2

 =

 16 + 49 4 + 14

4 + 14 1 + 4

 =

 65 18

18 5


So,

N =

 65 18

18 5


 5 18

18 65

 =

 649 2340

180 649

 .
Also, notice that from the right hand column of AAT we obtain

182 − 13(52) = 324− 13(25) = 324− 325 = −1.

And from the left hand column of N we obtain

6492 − 13(180)2 = 421, 201− 421, 200 = 1.
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Example 17: The possible solutions to the equation ab − b2 = −30 where

a > 0, c < 0 are given below. There are 40 solutions. These are generated using the

algorithm in Appendix D.3.

(1, 0,−30) (30, 0,−1) (2, 0,−15) (15, 0,−2)

(3, 0,−10) (10, 0,−3) (5, 0,−6) (6, 0,−5)

(1, 1,−29) (29, 1,−1) (1,−1,−29) (29,−1,−1)

(1, 2,−26) (26, 2,−1) (1,−2,−26) (26,−2,−1)

(2, 2,−13) (13, 2,−2) (2,−2,−13) (13,−2,−2)

(1, 3,−21) (21, 3,−1) (1,−3,−21) (21,−3,−1)

(3, 3,−7) (7, 3,−3) (3,−3,−7) (7,−3,−3)

(1, 4,−14) (14, 4,−1) (1,−4,−14) (14,−4,−1)

(2, 4,−7) (7, 4,−2) (2,−4,−7) (7,−4,−2)

(1, 5,−5) (5, 5,−1) (1,−5,−5) (5,−5,−1)

Then, using WA by running the code in Appendix D.4 we will list the different

paths generated by WA that contain these solutions. The bottom row will contain

the resulting matrices composed of left and right steps. Each path is arranged as a

column for easy comparison so they read from top to bottom, not left to right. Notice

that in this case, there is no indicated equivalence between (1, 0,−30) and (30, 0,−1).

Instead, the orbit containing (30, 0,−1) has been absorbed into the equivalence for

(5, 0,−6).
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WA(1, 0,−30)

R(1, 1,−29)

R(1, 2,−26)

R(1, 3,−21)

R(1, 4,−14)

R(1, 5,−5)

L(6, 0,−5)

L(1,−5,−5)

R(1,−4,−14)

R(1,−3,−21)

R(1,−2,−26)

R(1,−1,−29)

R(1, 0,−30) 11 60

2 11



WA(2, 0,−15)

R(2, 2,−13)

R(2, 4,−7)

L(3,−3,−7)

R(3, 0,−10)

R(3, 3,−7)

L(2,−4,−7)

R(2,−2,−13)

R(2, 0,−15)

 11 30

4 11



WA(3, 0,−10)

R(3, 3,−7)

L(2,−4,−7)

R(2,−2,−13)

R(2, 0,−15)

R(2, 2,−13)

R(2, 4,−7)

L(3,−3,−7)

R(3, 0,−10)

 11 20

6 11



WA(5, 0,−6)

R(5, 5,−1)

L(14, 4,−1)

L(21, 3,−1)

L(26, 2,−1)

L(29, 1,−1)

L(30, 0,−1)

L(29,−1,−1)

L(26,−2,−1)

L(21,−3,−1)

L(14,−4,−1)

L(5,−5,−1)

R(5, 0,−6) 11 12

10 11



WA(30, 0,−1)

L(29,−1,−1)

L(26,−2,−1)

L(21,−3,−1)

L(14,−4,−1)

L(5,−5,−1)

R(5, 0,−6)

R(5, 5,−1)

L(14, 4,−1)

L(21, 3,−1)

L(26, 2,−1)

L(29, 1,−1)

L(30, 0,−1) 11 2

60 11
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C.1. Examples for appendices.

Example 18: Notice how we remove zeros: We first remove the trailing zeros,

then we add coefficients to the left and right of an intermediate zero, starting from

the rightmost instance.

[0; 0, 2, 1, 0, 4, 1, 0, 0]

[0; 0, 2, 1, 0, 4, 1]

[0; 0, 2, 1 + 4, 1]

[2; 0, 2, 5, 1]

[2; 0 + 2, 5, 1]

[2; 5, 1]

Example 19: The reader may recall that in Example 7 of page 20, there was

some ambiguity when we tried to map to 5
2
≡ [2; 2] ≡ [2; 1, 1]. However, under the

rule of φ we have φ
(

5
2

)
= h (g (c)) = h ([2; 1]) = R2L which is precisely what we

would like in order to navigate to precisely 5
2

in the Stern-Brocot tree.

Example 20: Consider 17
47
.

17 = 47(0) + 17

47 = 17(2) + 13

17 = 13(1) + 4

13 = 4(3) + 1

4 = 1(4) + 0
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By taking each of these quotients, we can deduce that g
(

17
47

)
= [0; 2, 1, 3, 3]

and therefore φ
(

17
47

)
= h

(
g
(

17
47

))
= R0L2RL3R3 = L2RL3L3.

L2RL3R3 =

 1 0

2 1


 1 1

0 1


 1 0

3 1


 1 3

0 1

 .
With a bit of calculator magic, we arrive at

φ

(
17

47

)
=

 4 13

11 36


and of course

φ−1


 4 13

11 36


 =

4 + 13

11 + 36
=

17

47
.
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APPENDIX D

PROVIDED CODE

Herein the reader will find some humble scripts for computing various things

related to this paper.

D.1. Coefficients of σ-n. For a given positive integer m we may generate

all coefficients c such that σ(c) = m using the code below.

#R e c u r s i v e l y g e n e r a t e s a l l p o s s i b l e

#c o l l e c t i o n s o f c o e f f i c i e n t s

#summing to n .

def permutat ions (n ) :

#base case

i f (n==1):

return [ [ 1 ] ]

#smal ler −c a l l e r

else :

c o l l e c t i o n = [ ]

for i in range (n ) :

sub = permutat ions ( i )

for s in sub :

c o l l e c t i o n . append ( [ n−i ] + s )
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return c o l l e c t i o n

#Set m to be the d e s i r e d v a l u e f o r sigma .

m = 5

c o l l e c t i o n = permutat ions (m)

”””

#Enabl ing t h i s b l o c k w i l l add the r e c i p r o c a l e x p r e s s i o n s

#to the l i s t .

r e c i p r o c a l s = [ ]

f o r p in c o l l e c t i o n :

r e c i p r o c a l s . append ( [ 0 ] + p )

c o l l e c t i o n = c o l l e c t i o n + r e c i p r o c a l s

”””

for p in c o l l e c t i o n :

print (p)

D.2. Farey set generator. The following program will generate a directory

of Farey sets Fn.

#Generates mediants o f each t i e r

#of Farey f r a c t i o n s and r e t u r n s

#the mth s e t .

def f a r ey (m) :

#Define the f i r s t l e v e l o f Farey f r a c t i o n s .

f = [ ( 0 , 1 ) , (1 , 1 ) ]
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#Enable the f o l l o w i n g l i n e to genera te the extended

#Farey f r a c t i o n s c o v e r i n g the i n t e r v a l [ 0 , i n f i n i t y ] :

#f = [ ( 0 , 1) , ( 1 . 0 ) ]

#Define a map f o r each Farey s e t s t a r t i n g at F1 .

f a r ey = {1 : f }

for i in range (1 , m) :

g = [ ]

#Add the mediant o f each p a i r o f the current

#Farey s e t to the l i s t , ’ g . ’

for j in range ( len ( f ) −1):

g . append ( ( f [ 2∗ j ] [ 0 ] + f [ 2∗ j + 1 ] [ 0 ] ,

f [ 2∗ j ] [ 1 ] + f [ 2∗ j + 1 ] [ 1 ] ) )

#For each mediant generated , i n s e r t i t where

#i t b e l o n g s in the cumula t ive f a r e y s e t ’ f . ’

f . i n s e r t (2∗ j +1, ( f [ 2∗ j ] [ 0 ] + f [ 2∗ j + 1 ] [ 0 ] ,

f [ 2∗ j ] [ 1 ] + f [ 2∗ j + 1 ] [ 1 ] ) )

f a r ey [ i +1] = g

return f a r ey [m]

#Change m to s e t how many l e v e l s o f f r a c t i o n s to genera te .

m = 5

for f in f a r ey (m) :

print ( f )
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D.3. Generating solutions for −ac − b2 = −D. For a given positive

integer D, the following program will generate a list of solutions to the equation

ac− b2 = −D where a > 0, c < 0. The algorithm does this by the equivalent logic for

solving ac+ b2 = D where a, c are positive.

from math import c e i l

from math import f l o o r

from math import s q r t

def a b c s o l v e r (D) :

s o l u t i o n s = [ ]

#b must be l e s s than or e q u a l to the square roo t o f D.

root D = c e i l ( s q r t (D) )

#We i t e r a t e through the f i n i t e p o s s i b l e v a l u e s o f b .

for b in range ( root D ) :

d i = D − b∗∗2

#Rearranging the equat ion to ac = D − b ˆ2 , we may

#f i n d s o l u t i o n s by f a c t o r i n g D−b ˆ2 = d i i n t o

#i n t e g e r s a and c .

#Checking up to the f l o o r o f the square roo t o f d i

#i s s u f f i c i e n t .

r o o t d i = f l o o r ( s q r t ( d i ) )

a = 1

while ( a <= r o o t d i ) :
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i f ( d i % a == 0 ) :

c = d i //a

s o l u t i o n s . append ( ( a , b , −c ) )

#This s t e p i s s k i p p e d i f a = c to

#avoid redundancy .

i f ( c != a ) :

#For each v a l u e o f c = d i /a , we can g e t

#another s o l u t i o n from a = d i /c .

s o l u t i o n s . append ( ( c , b , −a ) )

#This s t e p i s s k i p p e d i f b i s zero

#to avoid redundancy .

i f (b != 0 ) :

#We o b t a i n another s o l u t i o n f o r a , c

#when b i s not zero by

#r e p l a c i n g b wi th i t s a d d i t i v e i n v e r s e

#s i n c e (−b )ˆ2 = b ˆ2.

s o l u t i o n s . append ( ( a , −b , −c ) )

i f ( c != a ) :

s o l u t i o n s . append ( ( c , −b , −a ) )

a +=1

return s o l u t i o n s

#Set D to the d e s i r e d v a l u e .

D = 14

for s in s o l u t i o n s :

print ( s )
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D.4. The Wildberger algorithm. Below is the code implementation for

the algorithm introduced by Norman Wildberger. We may run any balanced form as

a seed and get the list of equivalent forms traversed as well as the summary of left

and right steps taken. The reader might find it of interest to run each of the solutions

found by the algorithm above for a given D. Doing so, one may find there are some

collections grouped by sequence of steps in a loop. To do this, we must be sure we

have access to both functions in a file. Then, iterate through the resulting list from

abc solver() and run each tuple as a seed to the function below.

#Q shou ld be o f the form Q = (a , b , c )

#I f Q i s not balanced , the a l gor i thm may not terminate ;

#t h e r e f o r e , be sure to s e l e c t a>0 and c<0. Or , e x p l o r e the

#cases when the a l gor i thm w i l l t erminate

#f o r an unbalanced seed .

#Set n accord ing to how many i t e r a t i o n s o f N you would l i k e

#to compute .

def WBA(Q, n = 1 ) :

#Some acces sory and i n i t i a l i z a t i o n code .

#Q recorded as s t a r t i n g p o i n t .

s t a r t = Q

stone s = [Q]

#An empty s t r i n g to record l e f t and r i g h t d e c i s i o n s .
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#Use fu l f o r f e e d i n g i n t o o ther a l g o r i t h m s .

path = ””

#F i r s t l i n e o f c o n s o l e output which l o g s the a l gor i thm .

#I f computing long paths , i t may speed up p r o c e s s i n g to

#d i s a b l e p r i n t s ta tements .

print ( ”\n>>s t a r t :\n” + ” %s ” % str (Q) )

#Counter f o r t r a c k i n g i t e r a t i o n s .

count = 0

#Store the s t a r t i n g q u a d r a t i c form in a map .

Q p = { ’ a ’ : Q[ 0 ] , ’ b ’ : Q[ 1 ] , ’ c ’ : Q[ 2 ] }

form = Q

while ( count < n ) :

#Compute the t o t a l .

T = Q p [ ’ a ’ ] + (2 ∗ Q p [ ’b ’ ] ) + Q p [ ’ c ’ ]

#I f T>0, take a l e f t s t e p .

i f (T > 0 ) :

#Take a l e f t s t e p and s t o r e the r e s u l t i n g

#form in the map .

Q p = { ’ a ’ : Q p [ ’ a ’ ] + 2∗Q p [ ’b ’ ] + Q p [ ’ c ’ ] ,

’ b ’ : Q p [ ’b ’ ] + Q p [ ’ c ’ ] , ’ c ’ : Q p [ ’ c ’ ]}

#Record the s t e p taken in the path s t r i n g .
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path = path + ”L”

#Express the new form as a t u p l e and p r i n t

#i t to the c o n s o l e wi th the s t e p taken .

form = (Q p [ ’ a ’ ] , Q p [ ’b ’ ] , Q p [ ’ c ’ ] )

print ( ”L” , form )

#I f T<0, take a r i g h t s t e p .

e l i f (T < 0 ) :

#Same l o g i c at as f o r a l e f t s t e p .

Q p = { ’ a ’ : Q p [ ’ a ’ ] , ’ b ’ : Q p [ ’ a ’ ] + Q p [ ’b ’ ] ,

’ c ’ : Q p [ ’ a ’ ] + 2∗Q p [ ’b ’ ] + Q p [ ’ c ’ ]}

path = path + ”R”

#Console output

form = (Q p [ ’ a ’ ] , Q p [ ’b ’ ] , Q p [ ’ c ’ ] )

print ( ”R” , form )

else :

#This shou ld on ly happen i f the seed form has a

#determinant t h a t i s a p e r f e c t square .

print ( ”T = 0 or T i s not a number . ” )

#Record the t u p l e r e p r e s e n t i n g the curren t
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#q u a d r a t i c form

s tone s . append ( form )

i f ( s t a r t == form ) :

count = count + 1

#Enable t h i s l i n e to pause at the end o f

#each i t e r a t i o n o f the w h i l e loop :

#input (” Press re turn to s t e p . ” )

#Returns a s t r i n g o f c h a r a c t e r s ’L ’ and ’R ’ to show the

#path taken .

return path

#Set the seed q u a d r a t i c form and p r i n t the r e s u l t s by c a l l i n g

#the f u n c t i o n . Below are t h r e e examples us ing ba lanced forms .

Q = (1 , 0 , −14)

print (WBA(Q) )

Q = (5 , 2 , −5)

print (WBA(Q) )

Q = (3 , 0 , −7)

print (WBA(Q) )
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